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Abstract— Navigation tasks often cannot be defined in terms
of a target, either because global position information is
unavailable or unreliable or because target location is not
explicitly known a priori. This task is then often defined
indirectly as a source seeking problem in which the autonomous
agent navigates so as to minimize the convex potential induced
by a source while avoiding obstacles. This work addresses
this problem when only scalar measurements of the potential
are available, i.e., without gradient information. To do so, it
constructs an artificial potential over which an exact gradient
dynamics would generate a collision-free trajectory to the target
in a world with convex obstacles. Then, leveraging extremum
seeking control loops, it minimizes this artificial potential
to navigate smoothly to the source location. We prove that
the proposed solution not only finds the source, but does so
while avoiding any obstacle. Numerical results with velocity-
actuated particles, simulations with an omni-directional robot
in ROS+Gazebo, and a robot-in-the-loop experiment are used
to illustrate the performance of this approach.

I. INTRODUCTION

Navigation tasks are often defined by specifying a target
position that the autonomous agent must attain [1], [2].
This, however, requires access to global information that is
scarce in many applications. For instance, when navigating
underwater or in-door, global position information is either
not available, due to the lack of GPS signal, or unreliable,
due to the high cost of obtaining long-term accurate inertial
measurements. What is more, the target location need not be
known explicitly a priori, e.g., when locating the source of
an oil spill [3] or radio source localization [4]. A common
way solution for these scenarios is to define the robot’s task
indirectly as a source seeking problem.

Source seeking can be abstracted as the problem of min-
imizing (maximizing) a convex (concave) potential induced
by the source. Though the potential is unknown, its values
and more importantly its gradient can be estimated from
sensor measurements. A gradient controller can then be used
to drive the robot to the potential’s minimum (maximum) as
long as it navigates an open convex space, i.e., an environ-
ment without obstacles [5], [6]. This solution is appealing not
only because it does not require prior explicit knowledge of
the goal, but because of its simplicity and the fact that they
require only local information.
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(FAPESP), grant 2018/12359-7.

2Dept. of Electrical and Systems Engineering, University of Pennsylva-
nia, USA

(
{luizf, aribeiro, pappasg}@seas.upenn.edu

)
3 Dept. of Electrical, Computer and Systems Engineering, Rensselaer

Polytechnic Institute, USA (paters@rpi.edu)

Still, if this method is to be useful is real-world applica-
tions, two issues must be addressed: (i) how to obtain good
enough gradient estimates from local, scalar measurements
and (ii) how to navigate cluttered environments. The main
approaches used to tackle issue (i) involve variations of
the classical Robbins-Monro algorithm, such as random
directions for stochastic approximation (RDSA) [7], [8], [9]
or sinusoidal extremum seeking control (ESC) [5], [6], [10],
[11]. Albeit effective, the stochastic nature of the former
may lead to non-smooth trajectories as the robot takes both
random steps to sample values of the potential and steps in
the direction of the estimated gradient. Although sinusoidal
ESC does not suffer from this issue, the fact remains that
neither methods are guaranteed to work in the presence of
obstacles.

Artificial potentials can be used to navigate cluttered
environments using gradient dynamics [issue (ii)]. The idea
is to combine the attractive potential defining the agent’s
goal with repulsive potentials representing the obstacles. Yet,
careful combination is required to avoid creating spurious
local minima that would prevent the robot to complete
the original task. Nevertheless, by following the gradient
of Koditschek-Rimon potentials or navigation functions, an
agent is guaranteed to the navigate to the minimum of a
strongly convex potential while avoiding strongly convex,
non-intersecting obstacles [12], [13], [14], [15]. In [16], an
ESC scheme was used for the first time in a navigation
application with NF.

This paper tackles the practical problem of source seeking
from scalar measurements in a cluttered environment. To do
so, we use local measurements from the objective potential
and (partial) knowledge of obstacles to construct an artificial
potential (Section III-A) that the agent navigates using an
ESC loop (Section III-B). Note that neither the target nor
the environment needs to be known a priori: the artificial
potential is evaluated online from sensor measurements. The
main contributions of this work include showing that under
mild conditions on the geometry of the free space and the
source’s potential, this autonomous system is guaranteed to
navigate to the source while avoiding collisions (Section IV)
without a priori knowledge of the environment. The scheme
is validated using realistic simulation in a ROS+Gazebo en-
vironment as well as an experiment with an omni-directional
robot navigating around spherical obstacles (Section V).

II. PROBLEM FORMULATION

As we mentioned in the introduction, we pose the problem
of source seeking in a cluttered environment as that of
minimizing an unknown scalar potential through a trajectory



defined in a non-convex space. Explicitly, let X ⊂ R2 be a
non-empty, compact, convex set delineating an environment
that contains non-intersecting (possibly unknown) obstacles
represented by the open convex sets Oi ⊂ X with non-empty
interior and smooth boundaries ∂Oi. The free space, i.e., the
space of points that the agent can occupy, is then defined as

F = X \
⋃
i

Oi. (1)

Our goal is to reach a source located at p? ∈ int(F) (un-
known) that induces a strongly convex potential f0 : X →
R+ such that p? = argminp∈X f0(p), where p = (x, y)T .
Observe that many physical phenomena, such as those in-
volving spherical wave propagation or 1/r2 decay, induce
strongly convex potentials. We wish to do so using only
scalar measurements of the potential f0 and while remaining
in the free space F at all times. Formally, our goal is to
generate a trajectory p(t) for the agent such that p(t) ∈ F ,
for all t ∈ [0,∞), limt→∞ p(t) = p?, and ṗ(t) is a
function only of f0(p(τ)) for τ ≤ t, i.e., without gradient
measurements.

Notice that the space F in which the robot will navigate
is punctured and therefore non-convex. Hence, even if the
gradient of f0 were known, simple gradient dynamics is
not guaranteed to stay within F . This problem can be
circumvented by constructing an artificial potential such
as the Koditschek-Rimon navigation function from local
measurements [12], [15]. However, the question remains of
whether gradient estimate errors would lead to collisions.
Though this issue was addressed for stochastic estimates
in [17], stochastic approximation methods may lead to highly
discontinuous trajectories.

To address these issues, we start by describing the two
building blocks of our solution: navigation functions and
sinusoidal ESC (Section III). We then introduce our solution
and prove that, if the source potential is the strongly convex
and of the obstacles are convex and non-intersecting, any
particle following this policy will approach the source while
remaining in the free space (Section IV). Finally, we illustrate
the performance of our method using an omni-directional
robot navigating a space with spherical obstacles (Sec-
tion V).

III. TECHNICAL BACKGROUND

In this section, we briefly introduce the two building
blocks we use to address the problem of source seeking in
cluttered environments: navigation functions and sinusoidal
ESC. More detailed discussions of these topics can be found,
e.g., in [15] and [18] respectively.

A. Navigation Functions

Navigation functions are artificial potentials that enable
collision-free navigation of spaces with obstacles. Explicitly,
a map ν : F → [0, 1] is said to be a navigation func-
tion towards p? in F if (i) ν ∈ C2 (twice continuously
differentiable), (ii) ν is polar at p?, (iii) ν is Morse, and

(iv) ∂F = ν−1(1) [12]. This map is called a navigation
function because the dynamical system

ṗ = −∇ν(p) (2)

navigates the free space F until it reaches p? [19].
In this work, we use the Rimon-Koditschek navigation

function ϕ from [12]. This potential is constructed by
describing each obstacle Oi as the null sublevel set of a
convex function βi : X → R. Explicitly, Oi = {p ∈
X | βi(p) < 0}. Such a function always exists since every
convex set is the sublevel set of a convex function [20].
Then, for β(p) =

∏
i βi(p), the Rimon-Koditschek potential

is defined as

ϕ(p) ,
f0(p)(

fk0 (p) + β(p)
)1/k , (3)

where k > 0 is a fixed order parameter and f0 is the
potential induced by the source. Note that if the obstacles (βi)
are known, then ϕ(p) can be evaluated by measuring the
potential f0(p). If they are not, ϕ can be built online as the
agent encounters the obstacles. In this case, if the obstacles
are ellipsoids, the functions βi can be estimated by measuring
their curvatures [15].

It has been established that for sufficiently curved worlds,
the artificial potential (3) is a navigation function for large
enough k [21], [15]. What is more, even when the gradient
in (2) is replaced by a stochastic approximation, the agent is
guaranteed to navigate the free space to p? under mild con-
ditions [17]. However, in order to deal with practical robotic
applications, we wish to obtain smoother trajectories than the
ones produced by stochastic gradient approximations. To do
so, we rely on extremum seeking dynamics.

B. Sinusoidal Extremum Seeking Control

The idea of ESC emerged in the context of gradient-
free optimization [22], having since spread to applications in
model-free control, adaptive control, and source seeking [23],
[24], [25], [5], [6], [10], [11], [26]. The basic ESC loop is
shown in Fig. 1. Intuitively, ESC uses a small periodic pertur-
bation α sin(ωt) to explore the landscape of the function f
around θ. Assuming f is a smooth convex function, this
perturbation creates a periodic response in y that is in phase
with respect to sin(ωt) if θ > θ? or out of phase if θ < θ?,
for θ? = argminθ f(θ). The feedback loop then corrects θ
until it stabilizes at θ?. Another way to understand ESC is by
noticing that the high-pass filter (HPF) and the demodulator
are effectively estimating the gradient of f [18]. Naturally,
the HPF cut-off frequency must be lower than that of the
sinusoidal perturbation (h < ω).

The loop in Fig. 1 is guaranteed to converge to the mini-
mum θ? for reasonable choices of parameters and under mild
conditions on f [27]. Since, these results have been extended
to vector-valued parameters and loops including nonlinear
plants dynamic [18]. It is not however straightforward that
using ESC to approximate the navigation function dynamics
in (2) will lead to a safe trajectory. Indeed, though this
combination will eventually reach the source location p?,



Fig. 1. Sinusoidal extremum seeking controller for static map and
minimization purposes.

it need not do so through a trajectory that remains in the
free space. To guarantee this is the case, we need to show
that the ESC loop provides a sufficiently accurate estimate of
the navigation function gradient for all t. In the next section,
we extend the ESC loop in Fig. 1 to the two-dimensional
case and describe how the navigation function in (3) can
be evaluated using local measurements. We then prove that
the ESC loop follows the potential gradient closely enough,
showing that this approach is able to navigate a cluttered
environment without collision to reach the source of interest.

IV. SOURCE SEEKING WITH SCALAR MEASUREMENTS

The proposed solution is described here. To do so, we
consider a velocity-actuated point mass as in [5]. A straight-
forward extension to omni-directional robots is explored in
the experiments of Section V. Though the presence of more
involved dynamics has been considered in the context of
navigation functions [28] and ESC [18], we defer this issue
for future work.

A diagram of the hybrid navigation function/ESC solution
is presented in Fig. 2(a). A similar approach was considered
in [16], though omitting the HPF in the ESC. While this
allows for a more direct analysis of the system dynamics,
it requires that the source potential be unbiased (f0(p?) =
0), which limits its application. In the current setting, the
agent senses the source by measuring its potential at the
current location p = (x, y)T . It then evaluates the navigation
function ϕ in (3) by incorporating partial knowledge of the
obstacles, i.e., using β̃(p) =

∏
i∈K βi(p) where K is the

set obstacles that the agent has encountered so far. This
value is then fed into a two-dimensional version of the ESC
loop from Fig. 1, constructed as in [5] by using orthogonal
perturbations, namely sin(ωt) and cos(ωt). Finally, the gra-
dient estimate from the ESC loop is feedback to the agent
actuators.

The ESC loop in Fig. 2 is guaranteed to con-
verge to a small neighborhood around p?. Indeed, [5]
showed that the source estimation error converges to
a O(α2 + 1/ω2)-neighborhood of zero for reasonable
choices of the gains Cx, Cy . Since ϕ is polar, this implies
that limt→∞ p(t) ∈ N ?, a small neighborhood of p?. This,
however, does not guarantee that p(t) ∈ F for all t ≥ 0,
i.e., that the agent does not collide with obstacles. To show
this is the case, we must demonstrate that ESC not only
converges to the minimum of ϕ, but does so by closely

(a)

(b)

Fig. 2. Source seeking with scalar measurement in cluttered environment
for velocity-actuated particle: (a) implementation diagram; (b) rearranged
version using in the proof of Theorem 1.

following its gradient. In other words, demonstrate that ESC
in fact approximates the dynamics in (2). The following
theorem characterizes the trajectory p(t) and shows that
under mild conditions, the agent approaches the source while
avoid obstacles.

Theorem 1: Consider the dynamical system in Fig. 2a and
assume that Cx = Cy = C � h � ω and α � 1, i.e.,
that the loop gains are small compared to the HPF cut-off
and perturbation frequencies and that the amplitude of the
perturbation is small. Then, there exists a safety guard σ =
O(αC/ω) such that if the agent considers virtual obstacles
inflated by σ, it will navigate collision-free to a neighborhood
of p?.

Proof: Due to space constraints, we provide a sketch of
the proof below. Detailed derivations can be found in [29].

Start by noticing that the block diagram in Fig. 2a can be
rearranged as in Fig. 2b using the linearity of the integrators.
Then, assuming Cx = Cy = C, the dynamical system in
Fig. 2b is described by the coupled differential equations

˙̂p = −Cz(ωt)
(
ϕ̄(p̂, ωt)− η(t)

)
(4a)

η̇(t) = h
[
ϕ̄(p̂, ωt)− η(t)

]
, (4b)

where p̂ = (x̂, ŷ)T denotes the particle position, z(u) =
[sin(u) − cos(u)]

T is the modulation vector, and ϕ̄(p̂, u) =
ϕ
(
x̂ + α sin(u), ŷ − α cos(u)

)
. Note that p(t) = p̂(t) +

αz(ωt). To obtain an approximate solution of (4), we start
by using the classical multi-timescale approximation [30].
Since C � h, there is an initial layer t = O(C/h) during
which p̂ is nearly constant and close to its initial value,
while η(t) converges exponentially fast to the quasi-steady-



state η0(p̂(0)) for

η0(p̂) = he−ht
∫
ehtϕ̄(p̂, ωt)dt. (5)

Then, for t = O(1), the value of η is close to its slow mani-
fold, i.e., η(t) = η0(p̂(t)) +O(C/h), and p̂(t) satisfies (4a)
with η(t) = η0(p̂(t)).

Having decoupled η from p̂, we can now apply the
averaging method to (4a). To do so, normalize the timescale
taking τ = ωt and use the fact that ϕ ∈ C2 to obtain a Taylor
expansion of ϕ̄ around p̂. Then, observe that the resulting
expression is of the form ˙̂p = εg(p̂, τ), where g is 2π-
periodic in τ and ε = αC

ω . Hence, p̂(τ) = p̂av(τ) + O(ε),
where ˙̂pav = εgav(p̂av) for gav(v) = 1

2π

∫ 2π

0
g(v, τ)dτ [31,

Thm. 10.4]. Explicitly,

˙̂pav = − αωC

2(h2 + ω2)

[
1 h

ω

− h
ω 1

]
∇ϕ(p̂av). (6)

Though (6) does not follow the gradient dynamics (2),
it can be shown to also avoid obstacles by showing that
whenever β(p̂av) = 0, i.e., p̂av is on the boundary of an
obstacle, β̇(p̂av) > 0 and the trajectory returns to the free
space. Since the actual trajectory p closely follows p̂av , as
long as there is a safety guard of O(αC/ω) around each
obstacle, the trajectory p̂ is collision-free and converges to
a neighborhood of p? according to [5, Thm. 1].

V. PERFORMANCE RESULTS

Three different scenarios were considered. In the first
one, a Matlab simulation with a simple velocity-actuated
particle model was performed. In the second case, a more
realistic simulation with a commercial Quadruple Mecanum
Robot was carried out using ROS+Gazebo. Lastly, an ex-
periment considering real dynamics with a robot-in-the-loop
was considered. In all cases, the obstacles were inflated
approximately by the radius of the robot, and the source
potential was modeled as:

J = f0(p) = qx(x− xs)2 + qy(y − ys)2 (7)

A. Velocity-actuated Particle

The parameters of the ESC were chosen such that ω = 40
rad/s, α = 0.07, Cx = Cy = −10 and h = 20. The world
consists in a circled environment with radius 3 m and five
round obstacles with radius 0,25 m at the points (−1.0, 0.0),
(−0.25, 1.2), (1.0, 0.7), (1.0,−1.0), (−0.5,−1.0) , respec-
tively. For the source potential, it was considered qx = qy =
1.0, and for the navigation function, it was set k = 6. The
starting point of the robot was se to (0.2, 2.5).

We first present the simulation considering that the source
is static and located at position (0, 0), as shown in Fig. 3.
For the sake of presentation, the level sets of the exact NF
and its true gradient are also plotted. As can be seen, the
source was found by the robot and the resulting path was
very close to the true gradient.

Fig. 4 considers the case of a slow time varying source.
The source starts static and, after for 10 s, it follows the
dashed red line path with speed vl = 0.2 [m/s]. The source

(a)

Fig. 3. Static source with unknown position. The level sets of the NF
are plotted considering that the source position is known. The particle’s
trajectory estimated by the extremum seeking is in black color and the true
gradient of the NF is in magenta color; the ”x” marker is the starting point
(0, 2.5) and the red ”o” is the source location (0, 0).

stops at position (−0.47, 0.38) and keeps there until the end
of the simulation. The particle finds the source while it is
moving and tracks it up to the final position.

(a)

Fig. 4. Moving source with vl = 0.2 [m/s]. The robot’s trajectory is in
black color, the ”x” marker is the starting point and the red ”o” stands for
the initial and final source location. The robot finds the source and tracks
it up to the final position.

B. Quadruple Mecanum Robot

A more realistic simulation was also carried out consider-
ing the Mecanum robot MPO-500, from Neobotix, which is
a commercial robot with four mecanum wheel, as depicted
in Fig. 5. It is ROS compatible and has a Gazebo model.
The main features of this robot are presented in Table I.

Fig. 5. Robot Neobotix, model MPO-500 [source: neobotix-robots.com].



TABLE I
PARAMETERS OF THE NEOBOTIX MECANUM ROBOT MPO-500.

Parameter value
Payload Default 50 [kg]

Dimensions (L×W ×H) 986 × 662 × 409 [mm]
Max. linear speeds (vx and vy) 0.8 [m/s]

Uptime up to 7 h or up to 3 km
Sensors 1 or 2 2D laser scanner

Simulations were performed in ROS+Gazebo using Rospy.
ESC parameters were chosen such that ω = 2.5π rad/s,
α = 0.15, Cx = Cy = −200 and h = ω/2. These values
violate the gain assumption in Theorem 1. The world consists
of a circular environment with radius 7 m and five round
obstacles, (4.5, 6.0, 0.35), (6.5, 3.0, 0.7), (6.0, 8.5, 0.7),
(10.5, 7.5, 0.35) and (11.0, 4.0, 0.35), here denoted in the
form (x, y, r), r being the radius. The starting point of the
robot is at (2.0, 6.0).

Three simulations were considered. In the first one, all
the obstacles are previously known, while in the second
one, three out of five are known. In these two cases, it was
considered qx = qy = 1.0, and for the NF, it was set k = 5.

In the third result it is assumed that none of the obstacles
is known a priori and k starts equal to zero. The initial
potential (with k = 0) is set as 0.1f0(p)/(0.1f0(p) + β0).
When a new obstacle is detected, k is incremented by one.

The ESC algorithm was discretized with a sampling fre-
quency equal to ωs = 10ω. The maximum linear speed was
limited to 0.8 m/s. A rosbag file was generated during the
simulations to record the ROS topics.

Figs. 6 and 7 present the results when all the obstacles are
known. It is possible to see that the trajectory of the robot
follows the true gradient of the navigation function and the
robot finds the source without hitting any obstacles.

Fig. 6. Gazebo simulation considering the Neobotix MPO-500. It is
assumed that all the obstacles are previously known. The source location is
at the mid-field.

Next results consider that the obstacles (6.5, 3.0, 0.7),
(10.5, 7.5, 0.35) and (11.0, 4.0, 0.35) are known a priori.
Fig. 8 shows the robot’s trail in the Gazebo world, while
Fig. 9 presents the trajectory of the robot on the level sets
of the NF, in three different moments: two right before the
navigation function being updated, and the final trajectory.
When a new obstacle is found, the NF is updated. The robot
successfully finds the source, avoiding all the obstacles.

Next and more interesting result considers a completely
unknown environment. Initially, k = 0, but it increases by
one when a new obstacle is found. Fig. 10 shows the trail of

Fig. 7. Plot of the robot’s trajectory. The level sets of the NF are plotted
considering that the source position is known.

Fig. 8. Gazebo simulation considering the Neobotix MPO-500. Three out
of five obstacles are known.

Fig. 9. Trajectory of the robot on the level sets of the NF in three different
moments, right before the updates of the NF and the final trajectory. The
axes limits are the same of Fig. 7.

the robot in the Gazebo, while Fig. 11 presents the trajectory
on the level sets of the NF. Again, the robot was able to find
the source and avoid every obstacle in the way.

Even not satisfying the assumption Cx, Cy � h in
Theorem 1, in all case, the robot was able to find the source
and avoid all obstacles. We set high values for the loop gains
because of the potential normalization imposed by the NF.
Moreover, it is worth mentioning that the maximum speed
of the robot was limited to 0.8 [m/s].



Fig. 10. Gazebo simulation with Neobotix MPO-500, assuming that none
obstacles are known a priori.

Fig. 11. Trajectory of the robot on the level sets of the NF in four moments,
being three right before the updates of the NF, and the final trajectory.
Obstacles are unknown a priori. Axes limits are the same of Fig. 7.

C. Triple Omniwheel Robot

The parameters of the ESC were chosen such that ω =
2.5π rad/s, α = 0.15, Cx = Cy = −20 and h = ω/2. The
world consists in a circled environment with radius 2.2 m
and five round obstacles with radius 0.13 m at the points
(1.0, 0.0), (1.5, 1.0), (1.5,−1.0), (2.5, 0.75), (2.5,−0.75) ,
respectively. The experiment was performed with the real
robot present in Figure 12, but the measurements of the
source potential was artificially generated, according to Eq.
(7), using odometry. As in the last case of the previous
subsection, it is assumed that the obstacle are unknown.
However, since the robot has no lidar yet, there is a table
with all the obstacles positions and it is assumed that when
the robot gets close to an obstacle, its position and curvature
are instantaneously detected and, thus, the NF is updated.
That is the reason why we called this experiment as real
dynamics with robot-in-the-loop. The ESC algorithm was
discretized with a sampling frequency equal to ωs = 10ω.
The maximum x and y speeds were limited to 0.6 m/s.

This robot was built for this experiment using a FRDM-
K64F micro controller board from NXP. Its main parameters
are shown in Table II. A velocity controller is implemented
for each wheel and the set-points are determined from vx

Fig. 12. Triple Omniwheel Robot.

TABLE II
PARAMETERS OF THE TRIPLE OMNIWHEEL ROBOT.

Parameter value
Wheels’ radius (R) 0.03 [m]

Distance from center to the wheels (L) 0.15 [m]
Robot’s max. linear speeds (vx and vy) 0.6 [m]

Robot’s angular speed (ΩR) 0.0 [rad/s]

and vy (from the ESC algorithm) considering the inverse
kinematics. Practical result is presented in Figure 13. Notice
that though it violates the assumptions of Theorem 1, the
robot could still reach the source collision-free.

(a)

(b)

Fig. 13. Results with robot in the loop. In a) it is presented the robot’s
trajectory (in black) considering the whole scenario, while b) shows the
same trajectory with the obstacles detected by the robot and the level sets
of final estimated navigation function with its true gradient (in magenta).

VI. CONCLUSIONS

This paper addressed the problem of source seeking with
scalar measurements in spaces cluttered with convex obsta-
cles. To do so, the autonomous agent builds a navigation
function online based on a local measurement of the source
potential and its (partial) knowledge of obstacles. A sinu-
soidal ESC loop was then used to minimize this artificial



potential so as to smoothly navigate to the source location.
Theoretical results guarantee that, under mild conditions, the
robot attains its goal while avoiding collisions. Experiments
with velocity-actuated particles and omni-directional robots
corroborated the efficiency of the method, even in situations
where no knowledge of the environment is available. Future
works include testing this method with real potential mea-
surements and extending it to 3D navigation for quadrotors
or unmanned underwater vehicles.
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