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INTRODUCTION OUR APPROACH STRONG DUALITY OF SPARSE FUNCTIONAL PROGRAMS APPLICATION: LINE SPECTRAL ESTIMATION

Theorem (Strong duality of sparse functional optimization) Other methods

Sparse functional optimization: why? . .
P P d Solve (Pl) exactly using duality

Suppose that h in (Pl) has no point masses (Dirac deltas). Then, strong
duality holds for (PI), i.e., if P is the optimal value of (Pl) and D is the
optimal value of (DI), then P = D.

» MUSIC: EVD-based method; assumes number of components n is
known.

» Signal processing is rich in inherently
continuous problems (e.g., imaging,
radar, continuous dictionaries. . . )

The ingredients

> Separability = closed form for the dual problem of (PI) » Atomic norm relaxation: The support is estimated from the

Corollary
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» Reparametrization using an overcomplete, continuous dictionary:
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