

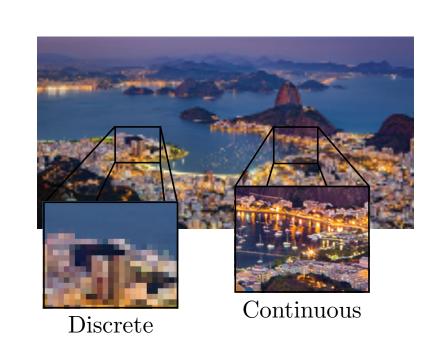
STRONG DUALITY OF SPARSE FUNCTIONAL OPTIMIZATION

Luiz F. O. Chamon*, Yonina C. Eldar[†], and Alejandro Ribeiro*

INTRODUCTION

Sparse functional optimization: why?

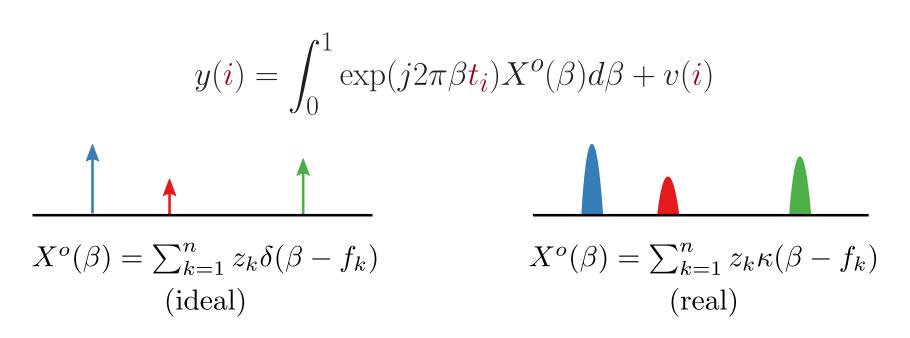
- Signal processing is rich in inherently continuous problems (e.g., imaging, radar, continuous dictionaries...)
- ► Finite # of samples ⇒ underdetermined problem
- Exploit structure: sparsity



Line spectral estimation

▶ Given noisy samples $\{y(i)\}$ taken at instants $\{t_i\}$ from a superposition of n complex exponentials, find their frequencies $(f_k \in [0,1])$, amplitudes, and phases $(z_k \in \mathbb{C})$.

► Reparametrization using an overcomplete, continuous dictionary:



ightharpoonup Few components $\Rightarrow X^o$ is sparse (small support)

SPARSE FUNCTIONAL PROBLEMS

- $lackbox(\Omega,\mathcal{B})$ measurable space with $\Omega\subset\mathbb{R}$ compact
- lacksquare Measurement vector $oldsymbol{y} \in \mathbb{C}^m$
- ► Functional linear model: $\int_{\Omega} \boldsymbol{h}(\beta) X(\beta) d\beta$
- $h:\Omega\to\mathbb{C}^m$ with measurable components $h_i\in L_2(\Omega)$

Problem

Find the sparsest functional linear model that fits the measurements $oldsymbol{y}$.

minimize
$$\int_{\Omega} \mathbb{I}[X(\beta) \neq 0] d\beta + \lambda \|X\|_{L_{2}}^{2}$$
subject to
$$\|\mathbf{y} - \int_{\Omega} \mathbf{h}(\beta)X(\beta)d\beta\|_{2}^{2} \leq w$$
(PI)

Roadblocks

- Infinite dimensionality
- discretization [Tang'13, Duval'17]
- duality [Shapiro'06, Tang et al.'13, Bhaskar et al.'13]
- Non-convexity
- convex relaxation [Tang'13, Bhaskar'13, Adcock'17, Puy'17]

OUR APPROACH

Solve (PI) exactly using duality

The ingredients

- ► **Separability** ⇒ closed form for the dual problem of (PI)
- ► Strong duality ⇒ solving the dual problem yields a solution of (PI)

THE DUAL PROBLEM

► Reformulate (PI)

minimize
$$\int_{\Omega} \mathbb{I} \left[X(\beta) \neq 0 \right] d\beta + \lambda \| X \|_{L_2}^2$$
subject to
$$\| \boldsymbol{y} - \hat{\boldsymbol{y}} \|_2^2 \leq w$$

$$\hat{\boldsymbol{y}} = \int_{\Omega} \boldsymbol{h}(\beta) X(\beta) d\beta$$
(PI'

► The dual function

$$d(\boldsymbol{\mu}, \nu) = \min_{X \in L_2(\Omega), \, \hat{\boldsymbol{y}}} \mathcal{L}(X, \hat{\boldsymbol{y}}, \boldsymbol{\mu}, \nu)$$

$$= \min_{X \in L_2(\Omega)} \int_{\Omega} \left[\mathbb{I}(X(\beta) \neq 0) + \lambda |X(\beta)|^2 + \mathbb{R}e\left(\boldsymbol{\mu}^H \boldsymbol{h} X(\beta)\right) \right] d\beta$$

$$+ \min_{\hat{\boldsymbol{y}}} \nu \|\boldsymbol{y} - \hat{\boldsymbol{y}}\|_2^2 - \mathbb{R}e[\boldsymbol{\mu}^H \hat{\boldsymbol{y}}] - \nu w$$

THE DUAL MINIMIZERS

- ► Convex quadratic minimization: $\hat{\boldsymbol{y}}_d(\boldsymbol{\mu}, \nu) = \boldsymbol{y} + \frac{\boldsymbol{\mu}}{2\nu}$
- ▶ $L_2(\Omega)$ is separable and the integrand is normal, so we can solve for each β separately [Rockafellar'76]

$$\inf_{X \in L_2(\Omega)} \int_{\Omega} F(\beta, X(\beta)) d\beta = \int_{\Omega} \inf_{X(\beta) \in \mathbb{C}} F(\beta, X(\beta)) d\beta$$
$$X_d(\beta, \boldsymbol{\mu}) = -\frac{1}{2\lambda} \boldsymbol{h}(\beta)^H \boldsymbol{\mu} \times \mathbb{I}\left(\left|\boldsymbol{h}(\beta)^H \boldsymbol{\mu}\right|^2 > 4\lambda\right)$$

SOLVING THE DUAL PROBLEM

maximize
$$\mathbf{m}(\mathcal{S}) - \frac{1}{4\lambda} \boldsymbol{\mu}^H \boldsymbol{H} \boldsymbol{\mu} - \mathbb{R}e\left[\boldsymbol{\mu}^H \boldsymbol{y}\right] - \frac{\|\boldsymbol{\mu}\|_2^2}{4\nu} - \nu w$$
 subject to $\boldsymbol{H} = \int_{\mathcal{S}} \boldsymbol{h}(\beta) \boldsymbol{h}(\beta)^H d\beta$ (DI)
$$\mathcal{S} = \{\beta \in \Omega \mid \left|\boldsymbol{h}(\beta)^H \boldsymbol{\mu}\right|^2 > 4\lambda\}$$

Stochastic Gradient Ascent

$$\mu_0 = 0, \ \nu_0 = 1$$
 for $t = 1, ..., T$

Draw β_i uniformly at random in Ω

$$\bar{\boldsymbol{H}} = \frac{1}{p} \sum_{j=1}^{p} \boldsymbol{h}(\beta_{j}) \boldsymbol{h}(\beta_{j})^{H} \times \mathbb{I} \left(\left| \boldsymbol{\mu}^{H} \boldsymbol{h}(\beta_{j}) \right|^{2} > 4\lambda \right)$$

$$\boldsymbol{\mu}_{t} = \boldsymbol{\mu}_{t-1} - \eta_{t} \left[\frac{1}{2\lambda\nu_{t-1}} \left(\nu_{t-1} \bar{\boldsymbol{H}} + \lambda \boldsymbol{I} \right) \boldsymbol{\mu}_{t-1} + \boldsymbol{y} \right]$$

$$\nu_{t} = \left[\nu_{t-1} + \eta_{t} \left(\frac{\left\| \boldsymbol{\mu}_{t-1} \right\|_{2}^{2}}{4\nu_{t-1}^{2}} - w \right) \right]_{+}$$

STRONG DUALITY OF SPARSE FUNCTIONAL PROGRAMS

Theorem (Strong duality of sparse functional optimization)

Suppose that h in (PI) has no point masses (Dirac deltas). Then, strong duality holds for (PI), i.e., if P is the optimal value of (PI) and D is the optimal value of (DI), then P=D.

Corollary

Let X^* be the solution of (PI) and μ^* be the solution of (DI). Then, $X^*(\beta) = X_d(\beta, \mu^*)$.

Proof sketch

Reformulate (PI) as

$$\mathcal{Z} = \left\{ \left. s \in \mathbb{R} \mid \exists X \in L_2(\Omega) \text{ s.t. } s = \int_{\Omega} \mathbb{I}(X(\beta) \neq 0) d\beta + \lambda \, \|X\| \right\} \right\}$$

minimize c

and
$$\left\| \boldsymbol{y} - \int_{\Omega} \boldsymbol{h}(\beta) X(\beta) d\beta \right\|_2^2 \leq w$$

Lemma

The cost-constraint set $\mathcal C$ is convex.

► Take $c, c' \in \mathcal{C}$ achieved for $X, X' \in L_2(\Omega)$. Construct a vector measure \mathfrak{p} over (Ω, \mathcal{B}) such that

$$\mathfrak{p}(\mathcal{Z}) = \begin{bmatrix} \int_{\mathcal{Z}} \left[\mathbb{I}(X(\beta) \neq 0) + \lambda |X(\beta)|^2 \right] d\beta \\ \int_{\mathcal{Z}} \left[\mathbb{I}(X'(\beta) \neq 0) + \lambda |X'(\beta)|^2 \right] d\beta \end{bmatrix}$$

Note that $\mathfrak{p}(\emptyset) = \mathbf{0}$ and

$$\mathfrak{p}(\Omega) = \begin{bmatrix} \int_{\Omega} \mathbb{I}(X(\beta) \neq 0) d\beta + \lambda \|X\|_{L_2}^2 \\ \int_{\Omega} \mathbb{I}(X'(\beta) \neq 0) d\beta + \lambda \|X'\|_{L_2}^2 \end{bmatrix} = \begin{bmatrix} c \\ c' \end{bmatrix}$$

Lyapunov's convexity theorem

If $\mathfrak p$ is a non-atomic measure, then its range is convex. Explicitly, for every $\theta \in [0,1]$ there exists $\mathcal T_\theta \in \mathcal B$ such that

$$\mathfrak{p}(\mathcal{T}_{\theta}) = \theta \mathfrak{p}(\Omega) + (1 - \theta)\mathfrak{p}(\emptyset) = \theta \mathfrak{p}(\Omega)$$

- ▶ By additivity: $\mathfrak{p}(\Omega \setminus \mathcal{T}_{\theta}) = (1 \theta)\mathfrak{p}(\Omega)$.
- Let $X_{\theta}(\beta) = \begin{cases} X(\beta), & \text{for } \beta \in \mathcal{T}_{\theta} \\ X'(\beta), & \text{for } \beta \in \Omega \setminus \mathcal{T}_{\theta} \end{cases}$
- ▶ Then, $X_{\theta} \in L_2(\Omega)$ and (PI)-feasible

$$\left\| \boldsymbol{y} - \int_{\Omega} \boldsymbol{h}(\beta) X_{\theta}(\beta) d\beta \right\|_{2}^{2} = \left\| \boldsymbol{y} - \theta \int_{\Omega} \boldsymbol{h}(\beta) X(\beta) d\beta - (1 - \theta) \int_{\Omega} \boldsymbol{h}(\beta) X'(\beta) d\beta \right\|_{2}^{2} \le \theta \left\| \boldsymbol{y} - \int_{\Omega} \boldsymbol{h}(\beta) X(\beta) d\beta \right\|_{2}^{2} + (1 - \theta) \left\| \boldsymbol{y} - \int_{\Omega} \boldsymbol{h}(\beta) X'(\beta) d\beta \right\|_{2}^{2} \le w$$

lacksquare So the objective evaluated at $X_{ heta}$ is in $\mathcal C$ and

$$\int_{\Omega} \mathbb{I}(X_{\theta}(\beta) \neq 0) d\beta + \lambda \|X_{\theta}(\beta)\|_{L_2}^2 = \theta c + (1 - \theta)c'$$

▶ Hence, $c, c' \in \mathcal{C} \Rightarrow \theta c + (1 - \theta)c' \in \mathcal{C}$ for $\theta \in [0, 1]$.

APPLICATION: LINE SPECTRAL ESTIMATION

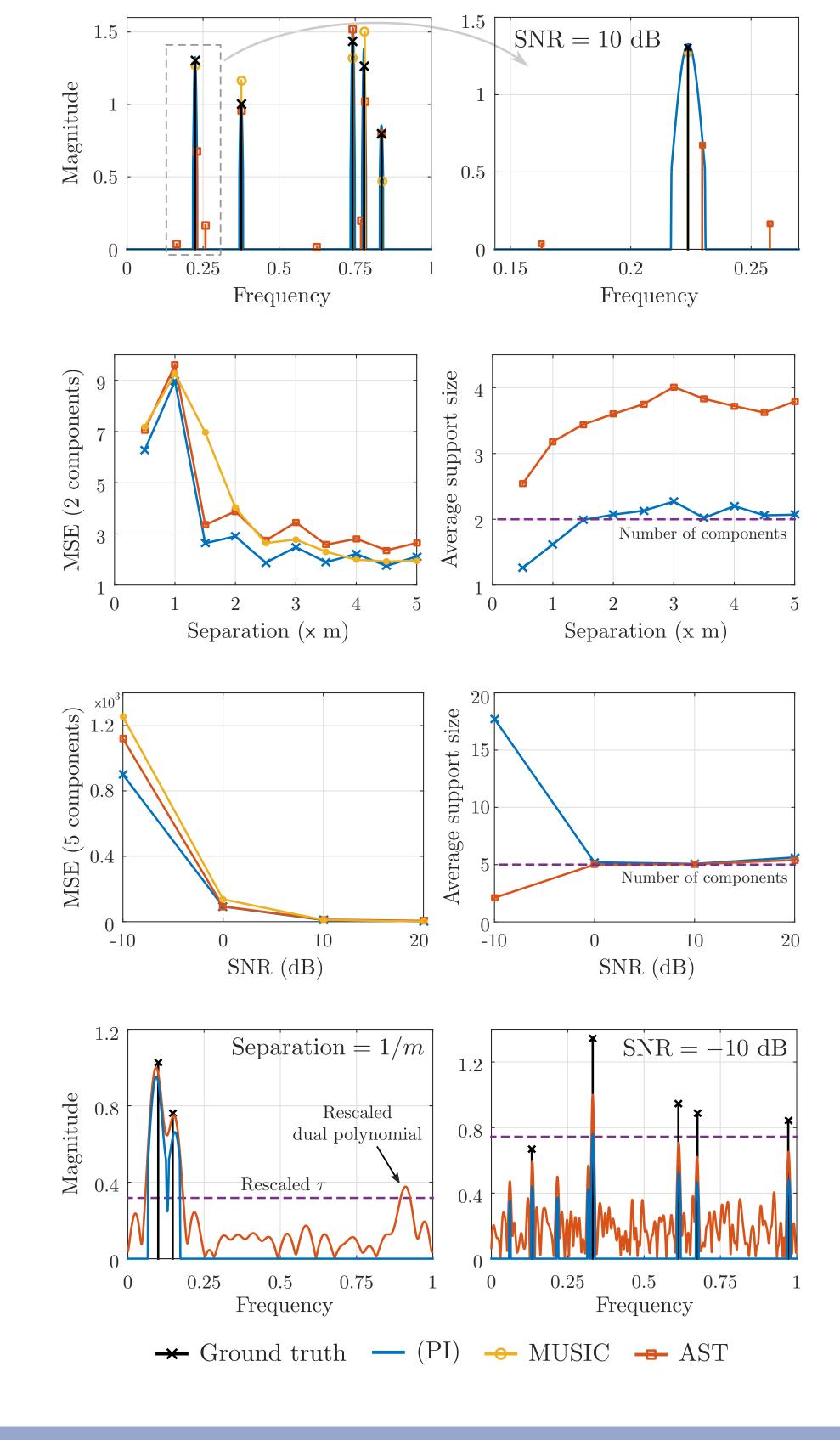
Other methods

- ▶ **MUSIC**: EVD-based method; assumes number of components n is known.
- **Atomic norm relaxation**: The support is estimated from the maxima of a polynomial obtained from x^* , the solution of the SDP

minimize
$$\frac{1}{2} \| \boldsymbol{x} - \boldsymbol{y} \|_{2}^{2} + \frac{\tau}{2} (t + u_{1})$$
subject to
$$\begin{bmatrix} T(\boldsymbol{u}) & \boldsymbol{x} \\ \boldsymbol{x}^{H} & t \end{bmatrix} \succeq 0$$
(AST)

where $T(\boldsymbol{a})$ is a Hermitian Toeplitz matrix with entries from \boldsymbol{a} and $\tau>0$ is a regularization parameter [Bhaskar'13].

Simulations



CONCLUSION

Although sparse functional optimization problem are infinite dimensional and non-convex, they have zero duality gap. They can therefore be solved efficiently by leveraging duality and stochastic gradient methods.