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Why learn under requirements?

Fact: learning solutions are ubiquitous

Drug
discovery

Fraud
detectionPredictive

maintenance

Quality control

"Smart" applications
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Why learn under requirements?

Fact: learning has big shortcomings!
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How we learn under requirements today

Model structure
Typical for geometrical invariances
(CNNs, GNNs, U-net, Dragonnet)

X Meets requirements by design

× Hard to design, transfer, or combine

Performance metric
Ubiquitous

(GANs, VAEs. . . )

minimize
θ

f0(θ) +
m∑
i=1

wifi(θ)

× Not guaranteed to meet requirements

X Easy to combine and train
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The goal

Develop a theory of constrained learning to

provide tools that enable learning under requirements
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The constrained learning problem

Definition

P ? = min
φ∈F

E(x,y)∼D [`0 (φ(x), y)]

subject to E(x,y)∼D [`i (φ(x), y)] ≤ ci

I `0 is a bounded, Lipschitz continuous, convex function

I F is a function space (e.g., L2)

I D is unknown except for (xn,yn) ∼ D (learning)
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The constrained learning problem

Definition

P ? = min
φ∈F

E(x,y)∼D [`0 (φ(x), y)]

subject to E(x,y)∼D [`i (φ(x), y)] ≤ ci
(P-CSL)

I `0, `i are bounded, Lipschitz continuous, convex functions

I Infinite dimensional

I Cannot evaluate expectations
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Agenda

Definition

P ? = min
φ∈F

E(x,y)∼D [`0 (φ(x), y)]

subject to E(x,y)∼D [`i (φ(x), y)] ≤ ci
(P-CSL)

Main questions

Would (P-CSL) enable learning with requirements?

What does it mean to solve (P-CSL)?

Can we solve (P-CSL) and how?
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Fair classification

Problem
Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.

minimize
φ∈F

E
[
−y log

(
φ(x, z)

)]

subject to E [DKL (φ(x,Male) ‖φ(x,Female))] ≤ c

I x collects the features (socio-economical data)

I z is the protected variable (gender)

I φ(x, z) = Pr [≥ US$ 50.000]
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Fair classification
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10%

20%

19.8%
18.9%

Predicted high income
Classifier

with gender
Classifier

without gender

0%

20%

40%

60%

80%

100%

H
ig

h
in

co
m

e
in

te
st

se
t Predicted (Men)

Predicted (Women)
Population

Chamon et al. Constrained Learning 10

luizf@seas.u
penn.edu



Fair classification

Problem
Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.

minimize
φ∈F

E
[
−y log

(
φ(x, z)

)]

subject to E [DKL (φ(x,Male) ‖φ(x,Female))] ≤ c

I x collects the features (socio-economical data)

I z is the protected variable (gender)

I φ(x, z) = Pr [≥ US$ 50.000]

Chamon et al. Constrained Learning 11

luizf@seas.u
penn.edu



Fair classification

Problem
Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.

minimize
φ∈F

E
[
−y log

(
φ(x, z)

)]
subject to E [DKL (φ(x,Male) ‖φ(x,Female))] ≤ c

I x collects the features (socio-economical data)

I z is the protected variable (gender)

I φ(x, z) = Pr [≥ US$ 50.000]

Chamon et al. Constrained Learning 11

luizf@seas.u
penn.edu



Applications

P ? = min
φ∈F

E(x,y)∼D [`0 (φ(x), y)]

subject to E(x,y)∼D [`i (φ(x), y)] ≤ ci
(P-CSL)

Applications

I Statistical invariances: Fairness, robustness (distributional shift), transfer learning,
unbalanced data (within-group accuracy). . .

I Learning with constraints: semi-supervised learning, VAEs, GANs. . .
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Agenda

Definition

P ? = min
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Agenda

Definition

P ? = min
φ∈F

E(x,y)∼D [`0 (φ(x), y)]

subject to E(x,y)∼D [`i (φ(x), y)] ≤ ci
(P-CSL)

Challenges

I Infinite dimensional

I Cannot evaluate expectations
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What’s in a solution?

Definition (Probably approximately optimal)

For εi > 0, i = 0, . . . ,m, and 0 ≤ δ < 1/2, a solution φ† of (P-CSL) is said to be
probably approximately optimal (PAOpt) if

1) Probably near-optimal

(≈ PAC learning)

Pr

[ ∣∣P ? − E
[
`0
(
φ†(x), y

)]∣∣ > ε0

]
≤ δ

2) Probably approximately feasible

Pr

[ ∣∣E [`i (φ†(x), y)]∣∣ > ci + εi

]
≤ δ
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How classical learning does it

P ? = min
φ∈F

E(x,y)∼D [`0 (φ(x), y)]

P̂ ?ε = min
θ∈Rp

E(x,y)∼D [`0 (f(θ,x), y)]

P̂ ?ε,N = min
θ∈Rp

1

N

N∑
n=1

`0 (f(θ,xn), yn)

Definition
For each φ ∈ F there exists θ ∈ Rp such
that

E [|f(θ,x)− φ(x)|] ≤ ν.
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How classical learning does it

P ? = min
φ∈F

E(x,y)∼D [`0 (φ(x), y)]

P̂ ?ε = min
θ∈Rp

E(x,y)∼D [`0 (f(θ,x), y)]

P̂ ?ε,N = min
θ∈Rp

1

N

N∑
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`0 (f(θ,xn), yn)

Theorem (VC learning theory)

Under mild assumptions,

P ? ≈ P̂ ?ε,N with high probability.
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An obvious idea that doesn’t work

P ? = min
φ∈F

E(x,y)∼D [`0 (φ(x), y)]

subject to E(x,y)∼D [`i (φ(x), y)] ≤ ci

P̂ ?ε,N = min
θ∈H

1

N

N∑
n=1

`0 (f(θ,xn), yn)

subject to
1

N

N∑
n=1

`i (f(θ,xn), yn) ≤ ci

D̂?
ε,N = max

λi≥0
min
θ∈H

1

N

N∑
n=1

(
`0 (f(θ,xn), yn) +

m∑
i=1

λi
[
`i (f(θ,xn), yn)− ci

])

6
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Main result

Theorem
Let f be an ν-parameterization of F . If (θ†,λ†) achieve D̂?

ε,N , then f(θ†, ·) is a probably
approximately optimal solution of (P-CSL):

∣∣D?
ε,N − P ?

∣∣ ≤ Õ(ν + 1√
N

)
with high probability

E
[
`i(f(θ

†,x), y)
]
≤ ci + Õ

(
1√
N

)
with high probability

Depends on. . .

parametrization quality (ν) requirements difficulty (λ?p) sample size (N)
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∣∣D?
ε,N − P ?

∣∣ ≤ (1 + ∥∥λ?p∥∥1)Lν + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

E
[
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√
1

N
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1 + log
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)]
with prob. 1− δ

Depends on. . .

parametrization quality (ν) requirements difficulty (λ?p) sample size (N)

Chamon et al. Constrained Learning 19

luizf@seas.u
penn.edu



Main result

Theorem
Let f be an ν-parameterization of F . If (θ†,λ†) achieve D̂?

ε,N , then f(θ†, ·) is a probably
approximately optimal solution of (P-CSL):

∣∣D?
ε,N − P ?

∣∣ ≤ (1 + ∥∥λ?p∥∥1)Lν + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

E
[
`i(f(θ

†,x), y)
]
≤ ci + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

Depends on. . .

parametrization quality (ν) requirements difficulty (λ?p) sample size (N)

Chamon et al. Constrained Learning 19

luizf@seas.u
penn.edu



Main result

Theorem
Let f be an ν-parameterization of F . If (θ†,λ†) achieve D̂?

ε,N , then f(θ†, ·) is a probably
approximately optimal solution of (P-CSL):

∣∣D?
ε,N − P ?

∣∣ ≤ (1 + ∥∥λ?p∥∥1)Lν + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

E
[
`i(f(θ

†,x), y)
]
≤ ci + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

Depends on. . .

parametrization quality (ν) requirements difficulty (λ?p) sample size (N)

Chamon et al. Constrained Learning 19

luizf@seas.u
penn.edu



Main result

Theorem
Let f be an ν-parameterization of F . If (θ†,λ†) achieve D̂?

ε,N , then f(θ†, ·) is a probably
approximately optimal solution of (P-CSL):

∣∣D?
ε,N − P ?

∣∣ ≤ (1 + ∥∥λ?p∥∥1)Lν + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

E
[
`i(f(θ

†,x), y)
]
≤ ci + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

Depends on. . .

parametrization quality (ν) requirements difficulty (λ?p) sample size (N)

Chamon et al. Constrained Learning 19

luizf@seas.u
penn.edu



Main result

Theorem
Let f be an ν-parameterization of F . If (θ†,λ†) achieve D̂?

ε,N , then f(θ†, ·) is a probably
approximately optimal solution of (P-CSL):

∣∣D?
ε,N − P ?

∣∣ ≤ (1 + ∥∥λ?p∥∥1)Lν + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

E
[
`i(f(θ

†,x), y)
]
≤ ci + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

Depends on. . .

parametrization quality (ν) requirements difficulty (λ?p) sample size (N)

Chamon et al. Constrained Learning 19

luizf@seas.u
penn.edu



Main result

Theorem
Let f be an ν-parameterization of F . If (θ†,λ†) achieve D̂?

ε,N , then f(θ†, ·) is a probably
approximately optimal solution of (P-CSL):

∣∣D?
ε,N − P ?

∣∣ ≤ (1 + ∥∥λ?p∥∥1)Lν + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

E
[
`i(f(θ

†,x), y)
]
≤ ci + 2B

√
1

N

[
1 + log

(
4(2N)dVC

δ

)]
with prob. 1− δ

Depends on. . .

parametrization quality (ν) requirements difficulty (λ?p) sample size (N)

Chamon et al. Constrained Learning 19

luizf@seas.u
penn.edu



Agenda

Definition

P ? = min
φ∈F

E(x,y)∼D [`0 (φ(x), y)]

subject to E(x,y)∼D [`i (φ(x), y)] ≤ ci
(P-CSL)

Questions

Would (P-CSL) enable learning with requirements? Yes

What does it mean to solve (P-CSL)? PAOpt

Can we solve (P-CSL) and how?
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Back to fairness

Problem
Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.

minimize
φ∈F

E
[
−y log

(
φ(x, z)

)]
subject to E [DKL (φ(x,Male) ‖φ(x,Female))] ≤ c

I x collects the features (socio-economical data)

I z is the protected variable (gender)

I φ(x, z) = Pr [≥ US$ 50.000]

→ neural network
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Back to fairness
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Fair classification

Female Male
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Extensions and further applications

I Non-convex losses `0, `i (under mild assumptions on D)
[future work]

I Primal-dual algorithm convergence
[future work]

I Constrained (e.g., safe) reinforcement learning
[PCFR, “Constrained Reinforcement Learning Has Zero Duality Gap.” NeurIPS, 2019]

[PFCR, “Safe Policies for Reinforcement Learning via Primal-Dual Methods.” ArXiv, 2019]
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Conclusion and extensions

(1) Does constrained learning enable learning with requirements?

Yes, e.g., fair classification.

(2) What does it mean to solve a constrained learning problem?

Obtaining a probably approximately optimal solution.

(3) Can we solve (P-CSL) and how?

Yes, using their empirical dual and the approximation depends on
the sample size, the model complexity, and the requirements’ difficulty.
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