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Why learn under requirements?

Fact: learning solutions are ubiquitous
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How we learn under requirements today

Model structure
Typical for geometrical invariances
(CNNs, GNNs, U-net, Dragonnet)

v Meets requirements by design

X Hard to design, transfer, or combine
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Constrained Learning

Performance metric
Ubiquitous
(GANs, VAEs. . .)
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X Not guaranteed to meet requirements

v Easy to combine and train



The goal

Develop a theory of constrained learning to

provide tools that enable.learning under requirements




The constrained learning problem

Definition

P = ?61;1 E(z )~ [lo (¢(x), )]

» /y is a bounded, Lipschitz continuous, convex function
> F is a function space (e.g., L2)

> D is unknown except for (zn,yn) ~ D (learning)
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The constrained learning problem

Definition

Pr=min  Egy)p [l (¢(x),4)] (P-CSL)

subject to  E(zy)op [li(d(@),y)] < ¢

» Infinite dimensional

» Cannot evaluate expectations
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Definition

P* = min
PpeF
subject to

Main questions

E ()~ [lo (6(z), y)]
E(zy)~D Uilo(x),9)] < ¢

(P-CSL)



Definition

P*=min Eq [l (¢(x),y)]
per @) (P-CSL)
subject to  E(zy)p [li(d(@),y)] < ¢

Main questions

Would (P-CSL)-enable learning with requirements?

Chamon et al. Constrained Learning



Definition

P*=min Eq [l (¢(x),y)]
per @) (P-CSL)
subject to  E(zy)p [li(d(@),y)] < ¢

Main questions

Would (P-CSL)-enable learning with requirements?

What does it mean to-solve (P-CSL)?

Chamon et al. Constrained Learning



Definition

P*=min Eq [l (¢(x),y)]
per @) (P-CSL)
subject to  E(zy)p [li(d(@),y)] < ¢

Main questions

Would (P-CSL)-enable learning with requirements?
What does it mean to-solve (P-CSL)?

Can.we solve (P-CSL) and how?

Chamon et al. Constrained Learning 8



Definition

P*=min Eq,p [l (¢(x),y)]
per @) (P-CSL)
subject to  E(zy)p [li(d(@),y)] < ¢

Main questions

Would (P-CSL)-enable learning with requirements?

Chamon et al. Constrained Learning



Fair classification

Problem
Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.
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Fair classification
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Fair classification

Problem
Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.

migiegize E [—ylog ((25(537 Z))]

subject to E [DgL(é(x, Male) || ¢(x, Female))] < ¢

» x collects the features (socio-economical data)
> z is the protected variable (gender)
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Applications

P*=min Eq [l (¢(x),y)]
PEF (@) (P-CSL)
subject to  E(z ) [l (0(2), )] < ¢

Applications

» Statistical invariances: Fairness, robustness (distributional shift), transfer learning,
unbalanced data (within-group accuracy)...

» Learning with constraints: semi-supervised learning, VAEs, GANs. ..
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Definition

P* = min
PpeF
subject to

Challenges

» Infinite dimensional

» Cannot evaluate expectations
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E(zy)~p [lo (0(x),4)]

(P-CSL)
E(z,y)~p [lild(@),9)] < ¢

Constrained Learning



What's in a solution?

Definition (Probably approximately optimal)

Fore; >0,i=0,...,m, and 0 < J < 1/2, a solution ¢! of (P=CSL) is said to be
probably approximately optimal (PAOpt) if
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What's in a solution?

Definition (Probably approximately optimal)

Fore; >0,i=0,...,m, and 0 < < 1/2, a solution ¢! of (P=CSL) is said to be
probably approximately optimal (PAOpt) if

1) Probably near-optimal (= PAC learning)

Pr {|P* EE[l (% (2),y)]| > eo] <46

2) Probably approximately feasible

Pr[[E[6 (0 @.0)]] > e+ | <
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How classical learning does it

P = éneljrg E(e,y)~p [fo (¢(x),y)]
\

Approximation error \©
0 Definition
A For each ¢ € F there exists 6 € RP such

pPr = 52%&% E(z,y)~p [lo (f(0,2)5y)] that

E[f(8,z) - ¢(z)]] <v.
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How classical learning does it

P = (IJIEI-I}I E(@y)~p [lo (4(x), y)]

Pr= greliar; E(z )~ [lo (f(0,2)5y)]

Pry =min — Zé (0, x,
N 6ERP . 0 n 7y71)
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How classical learning does it

P* =min Eg)~p [lo (¢(x),y)]

PEF
Theorem (VC learning theory)
Under mild assumptions,
P~ ]56* N with high probability.
N
=min ‘— Y ¥ 0.xz,),yn
‘N = min e Lo (£(8,0),yn)
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An obvious idea that doesn't work

bo (f(0,2n),yn)

==
M=

. ]5: = min
pP* = glelg IE(:n,y)w’D [50 (¢($), y)] N e n
—

subject to  E(g y)p [l (¢(x),y)] <

Il
—

subject to G (f(0,2n),yn) < ci

=2~
M=

3
Il
-
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An obvious idea that doesn't work

N
S 1
* . Pe - AT E 0) n)yIn
P =min Egy)en o (6(), )] N JEN T 2 G (6.2 )
PpEF n=
SUbjeCt to E(m,y)N'D [gz (¢(m)7y)] <S¢ . 1 Y
subject to N Z l; (f(B, wn)7 yn) <g¢

3
Il
-

D*N = max min
Ai>0 @eH

uMz

( [(0,2,),yn) + Z)\i [0i (f(8,%0),yn) — Cz])
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An obvious idea that doesn't work

P = glelg E(m,y)N'D [50 (d)(m)a y)]

subject to  E(g y)p [l (¢(x),y)] <

N m
ﬁ:,N = max min - Z (fo (f(ea xn)ryn) + Z)‘z Vz (f(97xn)a yn) - Cz])

Xi>0 0eH N .
=1
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Main result

Theorem
Let f be an v-parameterization of F. If (8T, A1) achieve ﬁ;N, then f(6%,-) is a probably
approximately optimal solution of (P-CSL):

Dy —P*| <O (1/ + ) with high probability

S

E[6:(f(0",2),y)] < es+ O ( > with high probability

5i-
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Definition

P*=min Eq,p [l (¢(x),y)]
per @) (P-CSL)
subject to  E(zy)p [li(d(@),y)] < ¢

Questions

Would (P-CSL)-enable learning with requirements? Yes
What does it mean to'solve (P-CSL)? PAOpt
Can.we solve (P-CSL) and how? Yes
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Back to fairness

Problem
Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.

minimize E [~y log (¢(x}2))]

subject to E[DkL (¢(x, Male) || ¢(x, Female))] < ¢

» x collects the features (socio-economical data)
> z is the protected variable (gender)
> Gz, 2) =Pr[> US$ 50.000]

Chamon et al. Constrained Learning 21



Back to fairness

Problem

Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.

1 N

max gg{l - % Z (yn log (f(6, @y, 27)) — XDk (f (6, z,, Male) || f(0,x,, Female)) — c])

n=1

» x collects the features (socio-economical data)
> z is the protected variable (gender)
> f(6,x, z)= Pr[> US$ 50.000]

Chamon et al. Constrained Learning 21



Back to fairness

Problem

Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.

1 N

max gg{l - % Z (yn log (f(6, @y, 27)) — A[DkL (f(8, z,, Male) || f(0,x,, Female)) — c])

n=1

» x collects the features (socio-economical data)
> z is the protected variable (gender)
> f(6,x, z)= Pr[> US$ 50.000]

Chamon et al. Constrained Learning 21



Back to fairness

Problem

Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.

=

1
max min — —

max min — (yn log (f(6, @y, 27)) — XDk (f(6, z,, Male) || (0, x,, Female)) — c])

n=1

» x collects the features (socio-economical data)
> z is the protected variable (gender)
> f(6,x, z)= Pr[> US$ 50.000]

Chamon et al. Constrained Learning 21



Back to fairness

Problem

Estimate the probability of an individual making more than US$ 50.000 based on personal and
socio-economical data without discriminating based on gender.

=

1
max min — —
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n=1

» x collects the features (socio-economical data)
> z is the protected variable (gender)

> f(6,z,z)=Pr[> US$ 50.000] — neural network
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Back to fairness
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Fair classification
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Extensions and further applications

» Non-convex losses {g, ¢;
[future work]

» Primal-dual algorithm convergence
[future work]

» Constrained (e:g., safe) reinforcement learning
[PCFR, “Génstrained Reinforcement Learning Has Zero Duality Gap.” NeurlPS, 2019]
[PFCR, "Safe Relicies’ for Reinforcement Learning via Primal-Dual Methods.” ArXiv, 2019]
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Conclusion and extensions

(1) Does constrained learning enable learning with requirements?
Yes, e.g., fair classification.

(2) What does it mean to solve a constrained learning problem?
Obtaining a probably approximately optimal solution.

(3) Can we solve (P-CSL) and how?
Yes, using their empirical dual and the approximation depends on
the sample size, the model complexity, and the requirements’ difficulty.

Chamon et al. [
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