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FIR–IIR adaptive filters hybrid combination

H.F. Ferro, L.F.O. Chamon and C.G. Lopes
Techset Com
To enhance the performance in IIR system identification scenarios, a
hybrid combination of FIR and IIR adaptive filters (AFs) via a super-
visor that senses which one is performing best is proposed. The FIR-
LMS AF is short, providing fast and robust convergence, whereas
the IIR-LMS AF is slow but accurate. The stagnation effect caused
by the different convergence rates is tackled through cyclic weight
transfers FIR→ IIR, which also ensure good tracking properties. A
design technique for the transfers cycle length is proposed, providing
good convergence while keeping computational cost low.
Introduction: In this Letter, we introduce an FIR–IIR AFs (adaptive
filters) combination in the system identification setup which shows
improved performance over an ordinary IIR AF while keeping the compu-
tational complexity low by skipping stability checks. To achieve this goal,
the FIR AF (or ‘guide’) is designed to be fast and robust while the IIR AF
has a small step size, thus it is accurate. In addition, a cyclic transfer of
weights based on the balanced order reduction [1] is performed. The
resulting system converges as fast as the FIR guide while achieving the
lowest excess mean squared error (EMSE) of the IIR AF, and can be
extended to other applications, as an adaptive prediction [2].

FIR and IIR adaptive filtering: Consider the system identification
scenario in Fig. 1, in which an AF Hi(z) tries to identify a plant
Ho(z), both IIR with the same order M. The desired signal d(i) is
given by [3]

d(i) = yo(i)+ v(i) = xoi w
o + v(i) (1)

with the unknown weights wo and the ‘plant regressor’ xoi vectors set to

wo = −ao1 −ao2 . . . −aoM−1 − aoM bo0 bo1 . . . boM−1 boM
[ ]T

xoi = yo(i− 1) yo(i− 2) . . . yo(i−M ) u(i) u(i− 1) . . . u(i−M )
[ ]

where u(i) is a Gaussian input signal, bok
{ }

and aok
{ }

are the unknown
feedforward and feedback coefficients, v(i) is a Gaussian zero-mean
white noise. Similarly, define the AF weights and regressor vectors wi

and xi as

wi = −a1(i) −a2(i) . . . −aM (i) b0(i) b1(i) . . . bM (i)
[ ]T

and

xi = [y(i− 1) y(i− 2) . . . y(i−M ) u(i) . . . u(i−M )]

so that the AF output is y(i) = xiwi−1 [3, 4]. In the output error LMS
(IIR-LMS) algorithm [3, 5], the squared error e2(i) = (d(i)− y(i))2 is
minimised via the stochastic gradient ∇we2(i) = −wT

i e(i), where the ‘fil-
tered regressor’ wi is defined as wi = xi −

∑M
k=1 ak (i)wi−k [5] and then

the IIR-LMS update rule arises as [3, 5]

wi = wi−1 + mwT
i e(i) (2)
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Fig. 1 System identification

IIR-LMS may be employed, but its normalised version, the
IIR-NLMS algorithm, is usually preferred as it is less sensitive to under-
damped or clustered poles in Ho(z) [6]

wi = wi−1 + m
wT
i

‖ wi ‖2 +e
e(i) (3)

in which e is a small regularisation factor. With {ak = 0}, the standard
positionLtd, Salisbury
FIR-LMS is retrieved from the IIR-LMS aforementioned

wi = wi−1 + muTi e(i) (4)

where ui = [u(i) u(i − 1)… u(i−M1 + 1)] is M1 × 1 in the FIR case.
Both update rules of (3) and (4) provide unbiased estimates at a low

computational cost, but the former may require stability checks to
prevent unstable poles in Hi(z) [5, 7, 8], making the adaptation compu-
tationally costly. However, in this work the IIR AF is implemented with
a small step-size to provide accuracy in the steady-state, which leads to
an exponential stability [9] and, therefore, makes the checks unnecess-
ary. In addition, stability is further enforced via AF combinations, as
explored in the sequel.

Combinations of adaptive filters: This Letter proposes a hybrid FIR–
IIR combination (‘FIIR cell’) as in Fig. 2, in which a fast and robust
FIR-LMS (AF1) is combined with an accurate but slow IIR-NLMS
(AF2), generating the overall filter output y(i) = λ(i)y1(i) + [1− λ(i)]
y2(i), where yk(i) is the kth AF output, λ(i) = 1/(1 + e−a(i−1)) is the
convex supervisor and a(i) is adapted via a gradient-descent rule
[10, 11]

a(i) = a(i− 1)+ mae(i) y1(i)− y2(i)
[ ]

l(i) 1− l(i)
[ ]

(5)

with e(i) = d(i)–y(i) the combination global error and μa a step size.

u(i ) y1(i )
d(i )

y(i )

e(i )
y2(i )

AF1
(FIR)

supervisorAF2
(IIR)

Â

Fig. 2 Filters combination

Such a scheme drives the global filter y(i) to the convergence rate of
the fast AF and the steady-state error of the accurate filter, although a
stagnation effect takes place until the latter outperforms the former
one [11]. When both AFs are FIR, this can be mitigated via direct
FIR1→ FIR2 weights transfer. When combining FIR with IIR filters,
the stagnation effect may be much worst, and weights transfers are
not trivial. Transfers IIR→ FIR are simple, but not wise, so that the
robustness is enforced. On the other hand, transfers FIR→ IIR are math-
ematically involved, but may considerably enhance overall stability and
convergence. We address this issue by introducing a projection function
P:FIR � IIR in the context of AF combinations that maps AF1 into
AF2 whenever convenient. There are many ways to define P; here,
we resort to ‘balance order reduction’ [1], implemented via the efficient
eigen-decomposition of the FIR AF weights Hankel matrix [12], at com-
plexity O((M1 + 1)2log(M1 + 1)), with M1 small (FIR-AF). The transfers
AF1→AF2 are performed cyclically, every L iterations, whenever AF1
is better than AF2, as tracked by λ(i). Herewith, complexity per cycle is
further reduced and non-stationaries are addressed, particularly abrupt
changes in wo. The resulting algorithm is then given by

w1, i = w1, i−1 + m1u
T
i e1(i) (6)

w2, i−1 = dLP w1, i−1

( )+ 1− dL( )w2, i−1, l(i) ≥ b
w2, i−1, l(i) , b

{
(7)

w2, i = w2, i−1 + m2
wT
i

‖wi‖2 + e
e2(i) (8)

a(i) = a(i− 1)+ mae(i) y1(i)− y2(i)
( )

l(i)(1− l(i)) (9)

in which δL = δ(r) is the Kronecker delta with r = i mod L, 0≪ β < 1 is a
constant that determines when AF1 is better than AF2, ek(i) = d(i)−
yk(i), y1(i) = uiw1,i−1, y2(i) = xiw2,i−1.

Cycle length L: We explore the energy conservation relation (ECR) [4]
to devise a simple yet efficient design technique for L. First, the
FIR-LMS learning is approximated by a straight line (in dB) that cap-
tures the AF initial convergence rate (see Fig. 3a). When this curve
reaches the noise floor 10 logs2

v at i = L, the AF1 steady state is declared
and the transfer P:w1, i−1 � w2, i−1 is performed, if AF1 is better than
AF2.
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Fig. 3 Cycle length design

a The design principle
b Convergence time over

Applying the ECR over the standalone FIR-LMS filter (AF1) leads to
the weighted variance relation [4], which provides a model for the AF1
transient evolution, assuming a real valued Gaussian white input u(i); i.e.

E‖w̃1, i−1‖2 = giE ‖wo
1‖2 +m1s

2
vs

2
u M1 + 1( )

∑i−1

k=0

gk (10)

where g W 1− 2ms2
u + m2

1s
4
u M1 + 4( ), wo

1 is the FIR truncated from the
IIR Ho(z), w̃1, i = wo

1 − w1, i. Equation (10) can be approximated by
E ‖ w̃1, i−1‖2≃ g iE ‖wo

1‖2. As e1(i) = ui w̃1, i−1 +v(i), the MSE Ee21(i)
equals s2

uE ‖w̃1, i−1‖2 +s2
v . The quantity ‖wo

1‖2 can be estimated from
‖wo

1 ‖2= s2
d − s2

v

( )
/s2

u [4], such that Ee21(i) ≃ g i s2
d − s2

v

( )
and the

AF1 approximate transient model becomes (in dB)

MSE1, dB(i) � 10i log g+ 10 log s2
d − s2

v

( )
(11)

A good estimate for L is then L = i|MSE1(i) = 10 logs2
v

{ }
(see Fig. 3a).

This simple design is quite efficient, and robust as L varies over a wide
range, as Fig. 3b depicts. Therein, the convergence time of an FIIR cell
is depicted as a function of L, and it is defined as the time required for
the combination to reach 85% of the AF2 steady-state error.

Simulation results: In the simulations below, the FIIR cell identifies the
plants, the frequency responses of which are in Figs. 4a and b. Both are
particularly hard due to their peculiar poles-zeros setup [6, 13]: the first
is a Butterworth system with clustered poles and the second is a notch
with underdamped poles. In both cases, M = 6, u(i) is a zero mean
Gaussian white signal with power s2

u = 1 and v(i) has a power of
s2
v = 1× 10−3.
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Fig. 4 Frequency response of simulation scenarios

a Butterworth scenario
b Notch scenario

The plots that follow show the EMSE of AF1 (‘guide’), the FIIR cell
with weight transfers (‘WT’, see (7)) and without (‘no-WT’), where the
superiority of the former is clear. For reference, the EMSE of a
standalone IIR AF is also shown.

In Fig. 5, the combination identifies the Butterworth system with
M1 = 10, μ1 = 0.02 and μ2 = 0.005. In this case, the error surface of a
regular IIR AF exhibits near constant error regions around the global
minimum on which gradient-based algorithms adapt slowly [6]. The
combination considerably improves the performance, as AF1 guides
AF2 towards the vicinity of the minimum rapidly. Only the first iter-
ations are shown as the standalone IIR takes too long to reach the
combination’s steady-state.
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Fig. 5 Stationary scenario

In Fig. 6, the combination identifies the notch with M1 = 15, μ1 =
0.007 and μ2 = 0.03. When i = 4 × 104, the notch frequency changes sud-
denly (abrupt change in wo). Although the standard IIR nearly stag-
nated, the FIIR cell responded fast, with a much superior performance.
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Fig. 6 Non-stationary scenario

Conclusion: The FIIR cells are robust, have a superior convergence rate
and handle abrupt non-stationarities better than a standard IIR AF while
avoiding the stability checks. In stationary scenarios, a properly
designed L minimises the number of transfers needed to accelerate
AF2 and decreases the overall complexity of the mapping P. The
current work involves fast Fourier transform (FFT)-based maps to effi-
ciently replace the function P employed here.
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