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CONTRIBUTIONS

i. The greedy solution of the A-optimal design problem is
(1− e−α)-optimal with α ≥ [1 +O(SNR)]−1.

ii. The value of the greedy solution of an E-optimal design problem
is at most (1− e−1)(f (D?) + kε), where ε ≤ O(SNR).

iii. As the SNR of the experiments decreases, the performance guarantees
for greedy A- and E-optimal designs approach 1− 1/e.

INTRODUCTION

I Experimental design = select which experiments to run or
measurements to observe to estimate a variable of interest

I Applications: designing experiments, semi-supervised learning,
multivariate analysis, sketching, sensor placement. . .

I NP-hard in general, P approximations for supermodular objectives

I estimation MSE (A-optimality) and spectral norm of error covariance
matrix (E-optimality) are not supermodular

EXPERIMENTAL DESIGN

I Pool of experiments E
ye = AT

e θ + ve

Eθ = θ̄ E(θ − θ̄)(θ − θ̄)T = Rθ ve ∼ N (0,Re)

I Design D ∈ P(E) (multiset)

I Use the experiments in D to estimate

z = Hθ

Proposition (Bayesian estimator)

Given a design D ∈ P(E), the unbiased affine estimator of z with the
smallest error covariance matrix in the PSD cone is given by

ẑD = E[z | θ,ve] = [long uninformative expression]

with error covariance matrix

K(D) = H

R−1
θ +

∑
e∈D

AT
eR
−1
e Ae

−1

HT .

OPTIMAL EXPERIMENTAL DESIGN

I A-optimal (NOT supermodular)

minimize
|D|≤k

Tr
[
K(D)

]
− CA

I E-optimal (NOT supermodular)

minimize
|D|≤k

λmax

[
K(D)

]
− CE

I D-optimal (supermodular)

minimize
|D|≤k

log det
[
K(D)

]
− CD

GREEDY EXPERIMENTAL DESIGN

function Greedy(`)

G0 = {}
for j = 1, . . . , `

u = argmin
e∈E

f
(
Gj−1 ∪ {e}

)
Gj = Gj−1 ∪ {u}

end

end

. Low complexity

. Sequential

. (1− 1/e)-optimal for supermodular objectives

SUPERMODULARITY

For A,B ∈ P(E), A ⊆ B,

f (A)− f (A ∪ {u}) ≥ f (B)− f (B ∪ {u})

α-SUPERMODULARITY

For A,B ∈ P(E), A ⊆ B, and α ∈ [0, 1]

f (A)− f (A ∪ {u}) ≥ α(#A,#B)
[
f (B)− f (B ∪ {u})

]
Theorem (Greedy approximately supermodular minimization)

Let f be a normalized, monotone decreasing, α-supermodular multiset
function. Then, for ᾱ = mina<`, b<`+k α(a, b),

f (G`) ≤

1−
`−1∏
h=0

(
1− 1∑k−1

s=0 α(h, h + s)−1

) f (D?)

≤ (1− e−ᾱ`/k)f (D?)

I If α ≡ 1, then f is supermodular [` = k ⇒ (1− 1/e)-optimality]

I If α < 1, then f is approximately supermodular
[` = α−1k ⇒ (1− 1/e)-optimality]

ε-SUPERMODULARITY

For A,B ∈ P(E), A ⊆ B, and ε ≥ 0

f (A)− f (A ∪ {u}) ≥ f (B)− f (B ∪ {u})−ε(#A,#B)

Theorem (Greedy approximately supermodular minimization)

Let f be a normalized, monotone decreasing, ε-supermodular multiset
function. Then, for ε̄ = maxa<`, b<`+k ε(a, b),

f (G`) ≤

[
1−

(
1− 1

k

)`]
f (D?)

+
1

k

k−1∑
s=0

`−1∑
h=0

ε(h, h + s)

(
1− 1

k

)`−1−h

≤ (1− e−`/k)(f (D?) + kε̄)

I If ε ≡ 0, then f is supermodular [` = k ⇒ (1− 1/e)-optimality]

I If ε > 0, then f is approximately supermodular
[ε < f (D?)/3k, ` = 3k ⇒ (1− 1/e)-optimality]

NEAR-A-OPTIMAL DESIGN

Theorem (A-optimality is α-supermodular)

The objective of A-optimal design is α-supermodular with

α(a, b) ≥ 1

κ(H)2
·

λmin

[
R−1
θ

]
λmax

[
R−1
θ

]
+ a · `max

, for all b,

where `max = maxe∈E λmax(AT
eR
−1
e Ae). For Rθ = σ2

θI, H = I,

γ = maxe∈E Tr[AT
eR
−1
e Ae], and ` = k,

ᾱ ≥ 1

1 + 2kσ2
θγ

.
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I α→ 1 as γ → 0: effectively
supermodular for low SNRs

I α→ 0 as γ →∞ (high SNR)

I Low SNR is the regime of
interest: in high SNR, even
random designs perform well
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(a) Low SNR
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[Wang et al.]

(b) High SNR

NUMERICAL EXAMPLE

Cold-start problem

I How to give recommendations when you don’t know what people
like? Cold-start survey

I aTe : ratings of movie e ∈ E by users in the training set

I New user’s rating for movie e ∈ E (experiments): ye = aTe θ + ve

Projection
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I EachMovie dataset (sample of
12.000 users)

I 75/25 split

I Favorite genre prediction:
25% misclassification with
100 movies

NEAR-E-OPTIMAL DESIGN

Theorem (E-optimality is ε-supermodular)

The objective of E-optimal design is ε-supermodular with

ε(a, b) ≤ (b− a)σmax(H)2 λmax (Rθ)
2 `max,

where `max = maxe∈E λmax(AT
eR
−1
e Ae). For Rθ = σ2

θI, H = I,

γ = maxe∈E Tr[AT
eR
−1
e Ae], and ` = k,

ε̄ ≤ 2kσ4
θγ.
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I ε→ 0 as γ → 0: effectively
supermodular for low SNRs

I ε→∞ as γ →∞ (high SNR)

I Better guarantees for smaller
designs
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(a) Low SNR
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(b) High SNR

RELATED WORK

Optimal experimental design

I Convex relaxation (SDPs or sequential SOCPs)
[Flaherty’06, Joshi’09, Sagnol’11, Horel’14, Wang’17]

I D-optimal design: (1− 1/e) guarantee using pipage rounding
[Ageev’04, Horel’14]

I A-optimal design: near-optimal randomized schemes for large k
[Wang’17]

Greedy non-submodular optimization

I ε-supermodularity with constant ε [Krause’10]

I α-supermodularity with constant α [Chamon’16]

I submodularity ratio (γ) bounds using RIP [Das’11], RSC
[Elenberg’16], and spectral inequalities [Bian’17]

I [Chamon’16, Bian’17] do not account for multisets:
2.5× 10−6-optimality vs 0.1-optimality (A-optimality, SNR = 0 dB)

I more stringent approximate submodularity (“δ-submodularity”):
function must be upper and lower bounded by a submodular function
[Horel’16]

I approximate submodularity is sometimes called weak
submodularity (e.g., [Elenberg’16]), not to be confused with weak
submodularity in [Borodin’14]

CONCLUSION

Greedy A- and E-optimal experimental design is guaranteed to work well
despite the fact that their objectives are not supermodular.
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