XXXI SIMPOSIO BRASILEIRO DE TELECOMUNICACOES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

On Parallel-Incremental Combinations of
LMS Filters that Outperform the
Affine Projection Algorithm

Luiz F. O. Chamon and Céssio G. Lopes

Abstract—Data reuse techniques have been successfully ap-
plied to improve the performance of adaptive filters, the Affine
Projection Algorithm (APA) being one of the most celebrated ex-
amples of such achievements. Recently, incremental combinations
of LMS filters have been shown to either match or outperform
the APA with lower complexity. However, this combination brings
forth a trade-off between convergence speed and steady-state
error which depends on the number of component filters. This
work proposes a parallel-incremental topology with coefficients
feedback to allow transient and steady-state performance to be
designed separately. Moreover, to address highly correlated envi-
ronments, a data reusing incremental combination is employed.
An approximate analysis is pursued using the data sharing
version of this structure. Numerical experiments show that the
novel combination can outperform the convergence rate and
misadjustment of the APA and combinations of APAs in different
scenarios.

Keywords— Adaptive filters, Combination of adaptive filters,
Parallel-incremental combination, Affine Projection Algorithm

I. INTRODUCTION

Data reuse—or data reusing (DR)—techniques have been
successfully employed to improve the performance of adaptive
filters (AFs) while maintaining their low computational com-
plexity [1]-[5]. Although their implementations usually incur
in additional memory requirements, the resulting algorithms
are able to trade-off complexity and performance, a desired
characteristic in several applications [5]. One of the most cel-
ebrated DR AFs is the Affine Projection Algorithm (APA) [2],
especially after fast versions of its update were devised [6],
[7]. It remains ubiquitous in applications such as speech
echo cancellation, where its performance matches that of Fast
Recursive Least Square (FRLS) filters using three times less
operations [8].

Combination of AFs is another technique introduced to
improve the performance of adaptive algorithms [9]-[16]. It
consists of aggregating a pool of AFs—called components—
by means of a supervisor, adaptive or not, that attempts to
achieve universality, i.e., make the overall system at least as
good—usually in the mean square sense—as the best filter
in the set. Generally, the components run independently while
their coefficients are linearly combined by the supervisor. This
topology—called parallel—has been explored using different
AFs, step sizes, orders, and supervising rules [9]-[14].
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Parallel combinations, however, present a well-known con-
vergence stagnation that has been addressed in several
ways [9], [14], in particular by the incremental topology [15].
This last structure has since been extended to take advantage
of DR and match—and sometimes outperform—the APA with
lower complexity. This improvement in transient performance,
however, comes at the cost of a misadjustment increase [16].

This work addresses this last issue by

e introducing a DR parallel-incremental combination of
LMS filters;

e using the data sharing incremental combination as an
approximation for the behavior of the DR version and
analyzing its mean performance;

e illustrating, through simulations, the performance of the
new topology and showing that it outperforms the APA—
and even APA combinations [17]—with lower complexity.

II. ADAPTIVE FILTERING

In the widely adopted system identification scenario, con-
sider the measurements

d(i) = ww® + v(i), (1)

where w? is an M x 1 vector that models the unknown system,
u,; is the 1 x M regressor vector that captures samples (i)
of a zero mean input signal with variance o2, and v(i) is the
realization of a zero mean i.i.d. Gaussian random variable with
variance 2. At iteration i, an AF uses the data pair {u;, d(i)}
to update a previous estimate w;_; of w? through

w; = W;—1 + [P, )

in which p is a step size and p = —B V*J(w;_1) is an update
direction vector, with B a positive-definite matrix, J(w;_1)
the underlying cost function of the AF, and * denoting the
conjugate transpose operation [18].

Different choices of p lead to different adaptive algorithms,
such as the celebrated LMS filter

w; = w;_1 + puje(i), 3

where e(i) = d(i)—u;w;_1 is the output estimation error [18].

A. Data reuse

In adaptive filtering, DR refers either to using K >
1 times a single data pair {w;,d(i)} or operating over
a set of K > 1 data pairs {U;,d;}, where U; =
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T T T. ;
[ul - ul ., ] isaK x M regressors matrix and

d; = [ d(i) d(i— K +1) ]T is a K x 1 measurements
vector. The first DR algorithm, the Data Reuse LMS (DR-
LMS), was of the former type [1]. Explicitly,

Wk = Wi—1,; + pu] [d(1) — wywi_1 ;] 4
Ww; = WK ;-
The APA, on the other hand, uses the last K data pairs and
is given, in its standard regularized form, by

w; = w;_1 + pU(UU; +el) Ve, ©)

where € is a regularization factor and e; = d; — U, w;_1 [2],
[18]. Specific versions of this algorithm are sometimes pre-
sented under different names, such as the Binormalized Data
Reusing LMS (BNDR-LMS) for K = 2 [4]. For K =1, (5)
becomes the Normalized LMS (NLMYS) filter [18].

III. COMBINATION OF ADAPTIVE FILTERS

For the sake of illustration, this section describes combina-
tions of LMS filters, although it is straightforwardly extended
to use different adaptive algorithms.

In a combination of N AFs, the components are distin-
guished by introducing the index n = 1,..., N. Hence, the
LMS recursion in (3) becomes

Wy, = Wni—1 + ,unufzﬂjen (Z)’ (6)

where e, (1) = d,(i) — Up,;Wp,i—1. The components coef-
ficients w,,; are aggregated by the supervisor’s parameters
1 (%) to obtain the overall—global—coefficients w; that min-
imize some function of the global estimation error e(i) =
d(i) —u;w;_1, usually the mean-square error (MSE) E |e(4) \2.

Different definitions for {u,, ;, d,(¢)} account for different
DR techniques. Generally, combinations of AFs are of the data
sharing kind, i.e., all components operate over the same data
pair—{w, ;,d, (1)} = {w;, d(@)} [9]-[15]. Recently, a DR
formulation of combinations of AFs was introduced by [16].
Data and component filters were separately indexed using k
and n respectively, so that the number of components was not
limited by the number of available data pairs, as is the case
of the DR-LMS in (4). This data buffering approach used
{un,i,dn(i)} = {w;—,d(i—k)}, where k = (n—1) mod K.
Hence, the components would use data pairs taken from
the k-th row of {U,,d;}, going over the data set as many
times as required. A consequence of this formulation is that
several DR AFs can be cast and analyzed under a combination
framework [16].

The combination topology is induced by the way coeffi-
cients are transferred in the structure—i.e., depending on the
choice of w,, ;1 in (6). The structures mentioned in Section I
can therefore be explicitly defined as:

Definition 1 (Parallel combination [9], [11], [14]).
Wy -1 = 6(2 — ’I"L)’wi,1 + [1 — 5(2 — rL)]wn’i,l

Wn,; = Wn,i—1 + Nnuz’l[dn(l) - un,iwn,ifl]

N (7
n=1

where §(-) is Kronecker’s delta and r € N. The first equa-
tion accounts for the cyclic feedback strategy, an effective
alternative to transfers of coefficients [9] that addresses the
stagnation issue of parallel combinations by feeding back the
global coefficients to all components every L iterations, where
L is a constant called the cycle length [14]. For N = 2, data
sharing, and L — oo, the usual parallel-independent structure
is recovered [9], [11].

Definition 2 (Incremental combination [15], [16]).

Wo,; = Wi—1
Wy = Wp—1, + 777L(71)Nnu:,z[dn(l) - un,iwn—l,i] (8)

W; = WN i,

Prior to introducing the new topology, it is convenient
to introduce a notation that uniquely defines combination
topologies and avoids the use of long cryptic acronyms. In-
spired by transfer function composition in system theory [19],
parallel combinations are represented by addition, whereas
incremental combinations are represented by multiplication.
Intuitive extensions of these can be used as shorthands for
larger combinations. Hence, for two LMS filters, their parallel
combination can be written as LMS + LMS or 2{LMS} and
their incremental combination, as LMS - LMS or {LMS}?2.

IV. PARALLEL-INCREMENTAL COMBINATION

Fig. la shows the trade-off between transient and steady-
state performance in the incremental combination depending
on the number of filters IV [16]. Still, the combination is able
to match the APA. Moreover, although DR yields negligible
improvements for i.i.d. inputs—the curves were omitted in
Fig. la for clarity—, it greatly impacts the convergence rate
when data are correlated (Fig. 1b).

These observations motivate a parallel combination between
the fast DR-{LMS}" and a more accurate algorithm to
address steady-state performance. Although other AFs would
be suitable, a single LMS filter with small step size is chosen
due to its low complexity and robustness [18]. In order to avoid
the stagnation effect, a cyclic coefficients feedback strategy is
employed [14]. Thus, this parallel-incremental combination—
LMS + DR-{LMS}*—is described as (see Fig. 2)

i. Cyclic coefficients feedback

Wh,i—1 =0 —rL)w;—1 +[1 —6(i — L) wni—1 9)
ii. LMS branch

w1, = wi,i—1 + piug [d(i) — wiwi 1] (10)

iii. Incremental LMS with DR branch (DR-{LMS})

wo,; = W21

w;,i = w;—l,i + N (D) pnwi_g[d(s — k) — uz’—k’wil—m]

/
w2, = Wy ;

an

v. Parallel combination

—-

w; = n(i)wl,i + [1 — n(i)]wg,i (12)
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Fig. 1. APA, NLMS, {LMS}”, and DR-{LMS}" (M = 100, K = 10,
N = 1, pn, = p). (@) APA: p = 0.3; NLMS: p = 1; and {LMS}N:
1w=3-10"3, N =20; (b) APA: i = 0.015; NLMS: z = 0.9; {LMS}N:
p=15-10"3, N = 30; and DR-{LMS}": . =2-1073, N = 15.
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Fig. 2. The novel parallel-incremental combination: LMS 4 DR-{LMS}¥

where again n =1,...,N, k= (n— 1) mod K, and r € N.
Different methods can be used to adapt n(i) [9], [11], [20].
For illustration purposes, a normalized convex supervisor is
employed, namely

p(i) = Bp(i = 1) + (1 = B)[yn (i) — (i)
a(i)=a(i—1)
e @) — w1~ ()]
. 1
) = e

where y,, (i) = u;w,, ;_1 is the n-th component output and €
is a regularization factor [20].

The novel parallel-incremental LMS requires (N +1)(2M +
1) 4+ O[n] multiplications per iteration, where O[n] represents
the supervisor complexity. For (13), O[n] = O[1]—assuming
the sigmoidal function is implemented using a lookup ta-
ble [21]. Therefore, the complexity of this combination is only
slightly higher than that from [16], remaining lower than that
of the APA while definitely outperforming it (see Section VI).

13)

V. BRIEF ON ANALYSIS

The LMS branch (10) of the combination is designed to
have a low misadjustment, so that the supervisor (13) will
track its output once the AF has converged [9], [14], [20].
However, this filter will adapt slowly and the transient phase
of the parallel-incremental combination will be dictated by the
incremental branch (11).

More detailed developments would require the transient
mean-square analysis of the DR-{LMS}"—or its data shar-
ing version {LMS}? as an approximation for white in-
puts (Fig. 1a). This analysis, however, involves the combined
effect of several AFs and is therefore challenging. Neverthe-
less, the following derivations help understanding the effect of
the incremental combination on the convergence rate of AFs
and suggest that its use in (11) is indeed appropriate.

A. Mean convergence of the {LMS}™

First the overall recursion of the {LMS}"V—data sharing—
is derived. Combining the equations in (8) yields

N
w; = w1 +u; Z N (1) pn [d(1) — wiwn—1 3], (14)

n=1
Noticing that for n = 1, w,_1; = w;_1, and using the

coefficients recursion, the estimation errors in (14) expand as

n—1

[d(i) = wiwn—1] = [T = m(i)pells*)e(d).

k=1

5)

Substituting (15) and defining the global coefficients error
w = w° — w;_1, (14) becomes

w; = wi—1 — (A + i) uye(i)

1 XN:(_l)k—luuin—l) [Z <{nn:n})}’ (16)

k=2

where fi = S0 nupu, and (177/71) is taken as the set of (%)
products of k-combinations of {7, 1, }. The time index on the
supervisor parameters were omitted for clarity’s sake. Notice
that (16) is algebraically similar to a variable step size (VSS)
algorithm. Its conceptual motivation, however, comes from
incremental strategies in distributed optimization' [22], [23].
In order to proceed, the following assumptions are made:

A.1 (Data independence) {u;} constitutes an i.i.d. sequence
of vectors independent of the noise v(j), Vi, j. Consequently,
u; is independent of w;, Vi > j.

A2 (Supervisor separation principle) n, (i) varies slowly
when compared to w; and, consequently, e, (i) = w;w;_1,
the a priori error. Hence, the expected value of these vari-
ables can be separated as in E[n,(i)u;] = En,(i) Eu,; and
Eny(i)ea ()] = Enn (i) Eeq(d).

The former is commonly adopted in the adaptive filtering liter-
ature and even though it is usually taken as an approximation,
it accurately describes the behavior of AF’s inputs in some
applications [18]. The latter was inspired by the separation
principle [18] and has been employed in the analysis of both
convex and affine combinations [24]-[27].

From the data model (1), e(i) = e, () 4+ v(¢). Thus, under
A.l and A.2, the expected value of (16) becomes

E’IB1 = Eﬁi_l — E(ﬂ + u’)uz‘ea(i),
which yields the mean global coefficients error recursion

Ew; = [I—EﬂRu—FM]EIEi,l

M éE(—Uf“i)k E [Z <{nn:n}>:| ,

with R,, = Euju;, the correlation matrix of the input signal.
Even though (17) is a closed-form recursion dependent only on
the data and the supervisor, the higher order moments required
to calculate M can be intricate to evaluate, especially for

a7)

A similar interplay takes place in the NLMS recursion [18]
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large N. Nevertheless, assuming the step sizes are small—
more precisely, for n,u, < 1—, the terms for k > 2 are
negligible and (17) can be approximated using

M = Z i tn, ENmnn Ewu,ul ;.

m#n

(18)

Empirical observations suggest that this approximation is accu-
rate even for a large number of components—N > 10 (Fig. 3).

Finally, for Gaussian inputs, (18) can be evaluated analyt-
ically. Taking the eigenvalue decomposition R, = QAQ*,
where A = diag{\,} is the diagonal eigenvalue matrix and
Q@ is the unitary eigenvector matrix, define the transformed
quantities u; = u;Q* and w; = Qw,. Notice that Euju, =
A and that since Q is an isometry, @w; will vanish iff w;
vanishes as well [18]. Hence, using the fourth-order moment
result from [18], (18) becomes

E’lIJiZA-E’lIJl‘,l
A=T-EpA

m#n
with v = 2 for real-valued inputs and v = 1 for complex-
valued and circular ;. For N = 2—as in [15]—(19) is exact.

Comparing (19)—or (17)—with the model for a single LMS
with step size u—explicitly Ew; = [1 — uA]Ew;_ [18]—it
is clear that the incremental combination is able to improve the
convergence rate by operating as though a larger step size (i)
were used. However, the reprocessing of the same data pair
yields ever smaller gains in convergence speed, so that the
net effect of the {LMS}? is not equivalent to a single LMS
filter with step size p. This difference is quantified by M—or
approximated by M.

Finally, notice from (19) that the mean transient perfor-
mance depends directly on the eigenvalues of R,,, in contrast
to the NLMS or the APA where A is normalized by some
data non-linearity which reduces the eigenvalue spread [18],
[28]. Hence, correlated inputs can worsen the convergence of
the {LMS}?, motivating the use of the DR-{LMS}? [16] in
the parallel-incremental combination.

19)

VI. SIMULATIONS

The data for the following simulations are taken from the
zero mean Gaussian i.i.d. sequences {x(7)} and {v(i)}, with
02 = 1 and 02 = 1073—SNR = 30 dB. White input
experiments use u(z) = (i), whereas correlated inputs are
generated using u(i) = au(i — 1) + V1 — a2z(i) with a =
0.95, which results in a highly correlated signal. All curves
are averaged over 200 independent realizations.

Fig. 3 illustrates the accuracy of the mean convergence mod-
els (17)—complete—and (19)—small p. Reduced step sizes
and large IV are employed to emphasize the effects of the small
step sizes approximation. The higher order moments in (17)
are evaluated using 10* Monte Carlo ensemble averages. No-
tice that (19) is accurate even when the number of components
is large as long as the u,, are small enough (Fig. 3a). In this
case, due to the large value of N, a small change in the step
sizes is enough to invalidate the model (Fig. 3b). Still, the

0.15 0.15
— Simulation
Complete
—  Small
0.1 it 0.1
1
'3
m
0.05 0.05
0 0 < =)
0 100 200 300 400 0 100 200 300 400
Iteration Iteration
(@) pn =0.01, N =75 (b) ur, =0.02, N =175
Fig. 3. Mean convergence models (M = 50, n, = 1, white inputs)

complete model remains accurate until the adaptation is too
fast for assumption A.1 to be valid.

Simulations comparing the incremental combination with
the APA and the NLMS were presented in Fig. 12. The
misadjustment of the AFs were equalized so as to better
compare their performance. For white inputs (Fig. la), the
DR-{LMS}# was omitted as its curves almost match those of
the {LMS}?V. Nevertheless, DR combinations become clearly
advantageous when the input data are correlated (Fig. 1b).

The DR-{LMS}¥ has already been shown to outperform
the APA with lower complexity [16]. Hence, the proposed
LMS + DR-{LMS}¥ is compared to a combination of APA
with different K. Explicitly, the APA and NLMS—APA with
K = 1—combination proposed in [17] and an improved ver-
sion using the coefficients feedback from [14], both employing
the normalized convex supervising rule (13).

Fig. 4a shows the combinations in a white input scenario.
The new combination clearly outperforms the APA from
Fig. 1a, but also the APA combination from [17]. Moreover,
though the coefficients feedback improves the performance
of the APA combination to the point of matching that of
the parallel-incremental LMS, the complexity of the latter
remains much lower (see Fig. 4a). Fig. 4b and 4c illustrate the
components behavior under cyclic feedback and the evolution
of the parallel supervisors 7)(i), respectively.

Last, Fig. 5 presents the new combination under colored
inputs. Although the performance of the DR-{LMS}" in
the correlated case was already noteworthy, the parallel-
incremental combination further improves its misadjustment,
again outperforming the APA combination from [17] and
matching the coefficients feedback version—with considerably
lower complexity. The components behaviors and the average
supervisor parameters are presented in Fig. 5b and 5Sc.

VII. CONCLUSION

A parallel-incremental combination was presented moti-
vated by the transient—steady-state trade-offs of the incremen-
tal topology. A simplified analysis was provided to demon-
strate the effect on the convergence rate of incrementally
combining AFs and the resulting model showed good agree-
ment with numerical experiments. The new combination was
shown to outperform the APA and combinations of APA in
different scenarios. Future work includes the extension of
this combination to more than two branches and mean-square
analyses.

2Using np i = p yields the faster convergence rates.



XXXI SIMPOSIO BRASILEIRO DE TELECOMUNICACOES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]
(91

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
(18]

[19]
[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

S. Shaffer and C.S. Williams, “Comparison of LMS, alpha LMS, and
data reusing LMS algorithms,” in Asilomar Conference on Circuits,
Systems, and Computers, 1983, pp. 260-264.

K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an
orthogonal projection to an affine subspace and its properties,” Elec.
Comm. Japan, vol. J67-A, pp. 126-132, 1984.

B.A. Schnaufer and W.K. Jenkins, “New data-reusing LMS algorithms
for improved convergence,” in Asilomar Conf. on Signals, Syst. and
Comput., 1993, pp. 1584-1588.

J. Apolindrio Jr., M.L.R. Campos, and P.S.R. Diniz, “Convergence
analysis of the binormalized data-reusing LMS algorithm,” IEEE Trans.
Signal Process., vol. 48[11], pp. 3235-3242, 2000.

R.A. Soni, K.A. Gallivan, and W.K. Jenkins, “Low-complexity data
reusing methods in adaptive filtering,” IEEE Trans. Signal Process.,
vol. 52[2], pp. 394405, 2004.

S.L. Gay and S. Tavathia, “The fast affine projection algorithm,” in
International Conference in Acoustic, Speech, and Signal Processing.
IEEE, 1995, pp. 3023-3026.

M.C. Tsakiris and P.A. Naylor, “Fast exact affine projection algorithm
using displacement structure theory,” in International Conference on
Digital Signal Processing, 2009.

Y.A. Huang, J. Benesty, and J. Chen, Acoustic MIMO Signal Processing,
Springer, 2006.

J. Arenas-Garcia, A.R. Figueiras-Vidal, and A.H. Sayed, “Mean-square
performance of a convex combination of two adaptive filters,” [EEE
Trans. Signal Process., vol. 54[3], pp. 1078-1090, 2006.

C.G. Lopes, E.H. Satorius, P. Estabrook, and A.H. Sayed, “Adaptive
carrier tracking for mars to earth communications during entry, descent,
and landing,” IEEE Trans. Aerosp. Electron. Syst., vol. 46[4], pp. 1865—
1879, 2010.

N.J. Bershad, J.C.M. Bermudez, and J.-Y. Tourneret, “An affine com-
bination of two LMS adaptive filters—transient mean-square analysis,”
IEEE Trans. Signal Process., vol. 56[5], pp. 1853—-1864, 2008.
M.T.M. Silva and V.H. Nascimento, “Improving the tracking capability
of adaptive filters via convex combination,” IEEE Trans. Signal Process.,
vol. 56[7], pp. 3137—-3149, 2008.

L.EO. Chamon and C.G. Lopes, “Combination of adaptive filters for
relative navigation,” in EUSIPCO, 2011, pp. 1771-1775.

L.F.O. Chamon, W.B. Lopes, and C.G. Lopes, “Combination of adaptive
filters with coefficients feedback,” in ICASSP, 2012, pp. 3785-3788.
W.B. Lopes and C.G. Lopes, “Incremental-cooperative strategies in
combination of adaptive filters,” in JCASSP, 2011, pp. 4132-4135.
L.FEO. Chamon, H.F. Ferro, and C.G. Lopes, “A data reusage algo-
rithm based on incremental combination of LMS filters,” in Asilomar
Conference on Signals, Systems and Computers, 2012.

A. Gonzalez M. Ferrer, M. de Diego and G. Pifiero, “Convex combina-
tion of affine projection algorithms,” in EUSIPCO, 2009, pp. 431-435.
A.H. Sayed, Adaptive filters, Wiley-IEEE Press, 2008.

K. Ogata, Modern Control Engineering, Prentice Hall, 2009.

L.A. Azpicueta-Ruiz, A.R. Figueiras-Vidal, and J. Arenas-Garcia, “A
normalized adaptation scheme for the convex combination of two
adaptive filters,” in ICASSP, 2008, pp. 3301-3304.

F. Vahid and T.D. Givargis, Embedded System Design: A Unified
Hardware/Software Introduction, John Wiley & Sons, 2001.

D.P. Bertsekas, “A new class of incremental gradient methods for least
squares problems,” SIAM J. Optim., vol. 7[4], pp. 913-926, 1997.
C.G. Lopes and A.H. Sayed, “Incremental adaptive strategies over
distributed networks,” IEEE Trans. Signal Process., vol. 55[8], pp. 4064—
4077, 2007.

M.T.M. Silva, V.H. Nascimento, and J. Arenas-Garcia, “A transient
analysis for the convex combination of two adaptive filters with transfer
of coefficients,” in ICASSP, 2010, pp. 3842—-3845.

V.H. Nascimento, M.T.M. Silva, R. Candido, and J. Arenas-Garcia, “A
transient analysis for the convex combination of adaptive filters,” in
SSP, 2009, pp. 53-56.

R. Candido, M.T.M. Silva, and V.H. Nascimento, “Affine combinations
of adaptive filters,” in Asilomar Conference on Signals, Syst. and
Comput., 2008, pp. 236-240.

S.S. Kozat, A.T. Erdogan, A.C. Singer, and A.H. Sayed, “Transient
analysis of adaptive affine combinations,” IEEE Trans. Signal Process.,
vol. 59[12], pp. 6227-6232, 2011.

H.-C. Shin and A.H. Sayed, “Mean-square performance of a family of
affine projection algorithms,” IEEE Trans. Signal Process., vol. 52[1],
pp. 90-102, 2004.

0 T T
Multiplications
per iteration
= (1) APA+NLMS (independent) [18] 13301 + O[n)
~10 | = (2) APA+NLMS (feedback) 13301 + O[n)
(3) LMS+DR-{LMS}V 1608 + O[n]
o
Z
a-20 :
(]
=
_30 - 4
(1)
27
3)
~40 i L
1000 2000 3000
Iteration
(a) Overall performance
0 1
<~ LMS @
0.8
-10
@ <— LMS + DR-{LMS}¥ 06
o -20 )
[ DR-{LMS} S04 ! ()
= v
30 7 / Vﬁm 02 @)
405 1000 2000 3000 05 1000 2000 3000
Iteration Iteration
(b) Components (c) Supervisor

Fig. 4. Parallel-incremental combination (white input) (M = 100, K =
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Fig. 5. Parallel-incremental combination (correlated input) (M = 100,
K =10, n, = 1, and ppn, = p). APA+NLMS: papa = 1, punpvs = 0.04,
pa = 0.8, 8 =0.95, ¢ = 10~%, L = 400; LMS+DR-{LMS}": 1 s =
4107, ppg sy = 2:1073, N =15, pq = 0.7, f = 0.95, ¢ = 1074,
L = 500.



