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ABSTRACT Probability of error LEMMA 2 (Distinct symbols case) (i) AfT = £, E an even number:
Multicarrier communication systems have become ubiquitous, mainly Dols: (1), s.(t _ _ P B+ 61 — 05
due to the popularization of OFDM in which carriers are sepa- Plej(k)]=1—-2 \/ klsilt), 55 (1)) Lemma 2. Ford, #0,n = 1,2, maxs K 1/2 €= E(Ba—1) 7(Ba—1) 5
rated in frequency by the inverse of the symbol duration. Recently, 0 Proof. Assuming d,, # 0,
more spectrally efficient modulations based on non-orthogonal car- 2k—1=Fa—1= cos(aPm + fr) = —1
riers (non-OFDM) have been put forward and shown numerically to ] ] . 10 9 K lim e =0
have the same performance as OFDM employing up to 40% less Single carrier (z;,z; € C) {Igéljn Dij(k) = dpmip < coslfy — 02 + ¢(k)] = snc(AfT) a—r00
bandwidth. This work addresses the issue of analytically deriving the 9 2
minimum frequency separation which does not affect the minimum Dy[si(t),s;(t)] = di; = |zj — @i P 2. — 6| <0, min || > &2 PROOF OF THEOREM 1
distance between multicarrier symbols. In doing so, it shows that 20518 © 5,20 min’ .9 9
the probability of error remains unaffected up to a certain degree of ] ] N 1]192] Proof of Theorem 1. From Lemma 1, min Dj; (k) < dy,,;,,, V k.
spectral superposition of the carriers, so that the BER of non-OFDM Multicarrier (x;, z; € C") oK 2 52 = 2 B For 6, # 0
remains the same as that of OFDM. Simulations and comparisons to Dilsi(t). s:(8)] = D2(k) = [z; — 2]  H(k) [z — Bon 0= (60" = |0k]” = drin, Kkl =1,2 n 7 0,
previous numerical results are used to illustrate this conclusion. k(Si\t), §j\0)] = Ly (R) = [Lj — Li Lj — Li . X K
min Di (k) > dpy, < cos[0 — 02 + ¢(k)] > Sinc(AST)’
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INTRODUCTION 1 hi(k) -+ hy_1(k) (i) oK >0 and oK < 0 (outside the hyperbolae): _
" B (k) 1 o hea(k) 9101 9102 and since cos(z) > —1,
~ N\ H (k) = ) . _ . IC = I; K
OFDM AfT — 1 : : - : e (|5g|2:dfmn-ﬁ?k|2,|5k|—>oo) min D}, (k) > dy,;,, < L < -1 pivil sinc(AfT) < 0.5
. }kV—l(k) 7\7—2(16) T 1 15| i#J sinc(A fT)
i i = lim - =-1, k{=1,2
. —jnp(k) |5k}gloo \/ Sul? 14 g2 ’ ’ ’ .
FDM . AFfT 1 hn(k) = sinc(nAfT)e , (k) =7mAfT(2k +1) [0k |” + dpin, Moreover, Lemma 3 guarantees that close to any A fT there is
non-o - f < a AfT’ for which cos = —1. Since cos and sinc are smooth,
\_ _J SPECTRAL SEPARATION LOWER BOUND (i oK oK < 0 (inside the hyperbolae): Theorem 1 is an infinitesimally tight bound on sufficiency (=).
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PROBLEM FORMULATION rTheorem 1. In a multicarrier system composed of N = 2 ) SIMULATIONS
Sinal . icati carriers spectrally separated by A f transmitting symbols 10,7 > d?,;,, = max K = K =3 O
Inglé carrier communication from a constellation C using rectangular-shaped pulse of [8nP=d7 4 | ‘ ‘ Constellations C
C = {xm}, xm € C — M-symbols constellation length T, | e |« square (M = 16)
sm(t) = Re{x,,g(t)e’?" ot} — band pass signal of z,, Hin D} (k) = Hin di; = d i, Yk < sinc(AfT) < 0.5, ;| ) o e o & o ) x O Hexagonal (M = 16)
i#] 17 g ° :
g(t) — pulse shape . . o ) ° e , @ 0 © Random (A =9
or using a Taylor series approximation, A fT > 0.6033. 2 o0
L J X X X X
Multicarrier communication I !
: : R R I A i
2, € CV — N x 1 multicarrier symbol (N carriers) % =L 01 Ou2 [T = ;= @: = difference vector o “[smw | Minimum distance x AT
. T . . (5,-3-7” = |6ij,n‘ 6j9ij’”) S 1 T——_——_—::Egﬁ:?l:n(!;)16) ;
s.(t) => Re{x(k) (t —kT)g(t .kT)} — band pass LEMMA 3 (Sufficiency lemma) | \ | N =2
signal of a sequence {x(k)} of multicarrier symbols - g .
Y(t) = ei2nfot ... pi2n[fo+(N=1)Af]t ]T ., carriers Dij<k) = |z; —x;|"H(k)[x; — =] (N =2) Lemma 3. Assuming AfT € Q and for some ¢ — 0, éoe m:;?”
2 . 5 04 1 1 min
= ATfT — z : 7
vector HJH 2 |51| |52| Smc( / ) COS[Hl b2 T ¢(k)] mk@n cos|hh — Oz + T(AfT +€)(2k — 1)] = —1. 02t 1 Theorem 1 — AfT > 0.6033...
A f — carriers spectral separation LEMMA 1 (Identical symbols case) b even O 5z od . N
o Proof. Constructing e with o € Z and g = { ’ _ .
AWGN channel Lemma 1. When § has a vanishing element, 0, otherwise 10 : ; ; ‘ BER for 4-QAM
2 N g2 . 1072
Received signal: r(t) = s(t) + v(t) min Dy; (k) = i, VK- () AfT = £, 0 an odd number: .
: : Ny Bt 6: — 6, .
v(t) — white, zero mean, Gaussian, PSD = - Proof. For &, = 0 or 6, = 0, D% (k) = ||8]%, V k. = —"Zat10r PRI .
T Assume §; =0, 1= (2 o 2 1) Pr+ 8] | S = igii‘;fg
: i _ 2 —1=(2a+1)0 = cos[(2a + 1) Pr + fn] = — =
MLE: rginpk[r(t)’se(t)] B / (kT +7) = se(m)|dr min DZ (k) = min ||62||” = d2,;,.. O lim €=0 eSS
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