Agenda

- I. Constrained supervised learning
	- Constrained learning theory
	- Resilient constrained learning
	- Robust learning

Break (30 min)

- II. Constrained reinforcement learning
	- Constrained RL duality ■ Constrained RL algorithms

Q&A and discussions

Constrained reinforcement learning

Agenda

Constrained reinforcement learning

CMDP duality

Reinforcement learning

• Model-free framework for decision-making in Markovian settings

Reinforcement learning

• Model-free framework for decision-making in Markovian settings $\mathbb{P}\left(s_{t+1} | \{s_u, a_u\}_{u \leq t}\right) = \mathbb{P}\left(s_{t+1} | s_t, a_t\right) = p(s_{t+1} | s_t, a_t)$

st+1

• MDP: ^S (state space), ^A (action space), *^p* (transition kernel)

[Reinforcement learning](#page-0-0)

- Model-free framework for decision-making in Markovian settings
	- $\mathbb{P}\left(s_{t+1} | \{s_u, a_u\}_{u \leq t}\right) = \mathbb{P}\left(s_{t+1} | s_t, a_t\right) = p(s_{t+1} | s_t, a_t)$

• MDP: S [\(state space\),](#page-7-0) A (action space), p (transition kernel), $r : S \times A \rightarrow [0, B]$ (reward)

3

[R](#page-0-0)einforcement learning

- Model-free framework for decision-making in Markovian settings $\mathbb{P}\left(s_{t+1} | \{s_u, a_u\}_{u \leq t}\right) = \mathbb{P}\left(s_{t+1} | s_t, a_t\right) = p(s_{t+1} | s_t, a_t)$ Agent *π* Mind Γ $\sum_{i=1}^{T}$ $\gamma^t r(s_t, a_t)$ 1 (P-RL) **Reward** f_t and f_{θ} and f_{θ} maximize $V(\pi) \triangleq \mathbb{E}_{s,a \sim \pi}$ State Reward Action *at st T rt*+1 *t*=0 Environment *st*+1 • MDP: S [\(state space\),](https://luizchamon.com/eusipco) A (action space), p (transition kernel), $r : S \times A \rightarrow [0, B]$ (reward) • $\mathcal{P}(\mathcal{S})$: space of probability measures parameterized by $\mathcal S$ D
O
- *T* (horizon) (possibly $T \to \infty$) and $\gamma < 1$ (discount factor) (possibly $\gamma = 1$)

3

3

Reinforcement learning

• Model-free framework for decision-making in Markovian settings

 $\mathbb{P}\left(s_{t+1} | \{s_u, a_u\}_{u \leq t}\right) = \mathbb{P}\left(s_{t+1} | s_t, a_t\right) = p(s_{t+1} | s_t, a_t)$

• (P-RL) can be solved using policy gradient and/or Q-learning type algorithms [W'92, WD'92, BT'96, KT'00, JFEPF'14, HKSC'15, NFPIY'15, AJFR'17, PP'18, SB'18, B'19, KCP'19. . .]

Find a control policy that navigates the environment effectively and safely

L \mathbb{L} ô

凊

ā

Constrained RL

MDP: S (state space), A (action space), p (transition kernel), $r_i : S \times A \rightarrow [0, B]$ (reward

space of probability measures parameterized by $\mathcal S$

 \rightarrow ∞) and $γ < 1$ (discount factor)

[Altman'99; Achiam et al., ICML'17; Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS'19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23. . .] ⁴

Safe navigation

Problem

Find a control policy that navigates the environment effectively and safely

5

PACE

Safe navigation

Safe navigation

Safe navigation

maximize *π*∈P(S) E*s,a*∼*^π*

Г. $\frac{1}{T}$ *T* −1 *t*=0

Problem

Problem Find a control policy that navigates the environment effectively and safely

1. $(P-RI)$

3

 $\frac{1}{2}$

 \bullet

O CHA

4

5

 \bullet

WHA

á L.

Safe navigation

Problem Find a control policy that navigates the environment effectively and safely

Safe navigation

Problem Find a control policy that navigates the environment effectively and safely

.
Ribeiro, IEEE TAC'23

Problem Find a control policy that navigates the environment effectively and safely

Safe navigation

Problem

Find a control policy that navigates the environment effectively and safely

$$
\begin{array}{ll} \mbox{maximize} & \mathbb{E}_{s,a\sim\pi}\left[\frac{1}{T}\sum_{t=0}^{T-1}r_0(s_t,a_t)\right] \\[10pt] \mbox{subject to} & \mathbb{E}_{s,a\sim\pi}\left[\frac{1}{T}\sum_{t=0}^{T-1}\underbrace{\mathbb{I}(s_t\notin \mathcal{O}_i)}_{r_i}\right] \geq 1-\frac{\delta_i}{T} \\[10pt] \mbox{•} & \mbox{Safety guarantee:} \end{array}
$$

Wireless resource allocation

 $\frac{1}{T}$ T⁻¹ *t*=0

Problem Allocate the least transmit power to *^m* device pairs to achieve a communication rate

毫

[Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23] ⁶

t=0

maximize *π*∈P(S) Eh*,*p∼*π*(h)

Wireless resource allocation

Problem Allocate the least transmit power to m device pairs to achieve a communication rate

Wireless resource allocation

Problem

Allocate the least transmit power to *^m* device pairs to achieve a communication rate

`@

7

ò

 $\frac{1}{2}$

 $\frac{1}{2}$

CONSTRUCTION

ng, Chamon, Lee, and Ribeiro, IEEE TSP'19]

1.

[Eisen, Zhang, Chamon, Lee, and Ribeiro, IEEE TSP'19] ⁸

 \overline{I}_1 \overline{I}_2 \cdots \overline{I}_m

O TOWN

4

 $\frac{1}{\omega}$

Š

۸

 R_1 R_2 \cdots R_m

[Chowdhury, Paternain, Verma, Swami, Segarra, Asilomar'23] ⁸

Constrained RL

 c e), A (action space), *p* (transition kernel), $\mathsf{c}_1 \cdot \mathsf{S} \times A \rightarrow [0, B]$ (reward)

 $P(S)$: space of probability measures parameterized by S

 \rightarrow ∞) and γ < 1 (discount factor)

[Altman'99; Achiam et al., ICML'17; Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS'19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23. . .] ⁹

Wireless resource allocation

Problem Allocate the least transmit power to *^m* device pairs to achieve a communication rate

in, Verma, Swami, Segarra, Asilomar'23] **8 8**

Monitoring task

Problem
Find a policy that maximizes the time in R_0 while <mark>monitoring R_1 and R_2 at least</mark> 1/3 of the time each

er
Ion-Ribeiro, IEEE TAC'2

Monitoring task

Ś, $\overline{\bigcirc}$ $\frac{1}{2}$

è ۱

OTHA

 $\overline{\mathcal{A}}$ **BLO**

 $\hat{\bm{\sigma}}$

Problem
Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

ര്

ARTIC ATT OF

DESCRIPTION

္စြ

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'24] ¹⁰

Monitoring task

Problem Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least $1/3$ of the time each

6 Š À

È

.
1Calvo-Fullana, Paternain, Paternain, Paternain, Paternain, Paternain, Paternain, Paternain, International, I
1111

Ribeiro, IEEE TAC'24

Monitoring task

Problem Find a policy that maximizes the time in *^R*⁰ while monitoring *^R*¹ and *^R*² at least ¹*/*³ of the time each

 R_0

के

Proposition There exist environments in which every task cannot be unambiguously described by a reward

There exist environments in which every task cannot be unambiguously described by a reward

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'24] ¹²

[Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC'24] ¹³

[Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC'24] ¹³

RL ⊊ **CRL** Proposition There exist e (MDPs) environments in which every task cannot be (occupation measure) (induced by a unique *^π* unambiguously described by a reward • There are tasks that CRL can tackle and RL cannot $\max_{\pi \in \mathcal{P}(\mathcal{S})}$ $V_0(\pi)$

 $\max_{\pi \in \mathcal{P}(\mathcal{S})}$ $V(\pi)$ \subsetneq subject to $V_i(\pi) \geq c_i$

[⇒] Regularized RL cannot solve *all* CRL problems

• How can we tackle CRL problems?

[Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC'24] ¹³

CRL methods

 $\begin{array}{ll}\text{maximize} & \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \right] \end{array}$

subject to $\mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \right]$

⋆ that maximizes a reward)

CONTROL

(*)

CMDP duality

CATE CATE

- \bullet [Domain independent](#page-7-0) \Leftarrow No hyperparameters tuning
- \bullet Tractable \Leftarrow Equivalent to solving a sequence of unconstrained RL problems
- Θ Approximation guarantee \Leftarrow *D*² \overline{a} = P^{\prime} *⋆* (strong duality) [e.g., convex optimization]

CMDP duality D^* = min max $\mathbb{E}_{s,a \sim \pi}$ $\label{eq:3.1} \begin{aligned} & \widehat{\mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{l=1}^{T-1} \gamma^t r_0(s_t,a_t) \right] + \lambda \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{l=1}^{T-1} \gamma^t r_1(s_t,a_t) \right]} \end{aligned}$ $\sum_{t=0}^{T-1} \gamma^t r_0(s_t, a_t) \Bigg] + \lambda \, \mathbb{E}_{s,a \sim \pi}$ \lceil 1 *T T* \sum^{T-1} *t*=0 *γ* t *r*₁(s_t *, a_t*) 1. $P^* = \max_{\pi \in \mathcal{P}(\mathcal{S})} \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \right]$ $\sum_{t=0}^{T-1} \gamma^t r_0(s_t, a_t)$ subject to $\mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_1(s_t, a_t) \right] \geq 0$ Γ 1 *T T* \sum^{T-1} *t*=0 *γ* t ^{*t*} $r_1(s_t, a_t)$ ≥ 0

Theor

16

If there exists $\pi^{\dagger} \in \mathcal{P}(\mathcal{S})$ such that $V_i(\pi^{\dagger}) > c_i$ for all $i = 1, ..., m$, then $D^* = P^*$ (strong duality). • There is some sort of hidden convexity in CRL [⇒] Occupation measure

Occupation measure

E*s,a*∼*^π*

• The occupation measure of a policy *^π* is the (averaged) probability of visiting each state-action pair

$$
\rho_\pi(s,a) = \frac{1-\gamma}{1-\gamma^\top} \sum_{t=0}^{\gamma-1} \gamma^t \, \mathbb{P}_{s,a \sim \pi}\!\left(s_t = s, a_t = a \right) \longleftrightarrow \pi(a|s) = \frac{\rho_\pi(s,a)}{\displaystyle\int_{\mathcal{A}} \rho_\pi(s,a) da}
$$

• The value functions $V_i(\pi)$ can be written as an expectation with respect to the ρ_i

$$
\sum_{a \sim \pi}^{n} \left[\sum_{t=0}^{T-1} \gamma^t r_i(s_t, a_t) \right] = V_i(\pi) \propto V(\rho_\pi) = \mathbb{E}_{(s, a) \sim \rho_\pi} \left[r_i(s, a) \right]
$$

$$
= \int_{\mathcal{S} \times \mathcal{A}} r_i(s, a) \rho_\pi(s, a) \, ds da
$$

17

 $\mathsf{\Theta}$

[⇒] The value functions *^Vi*(*ρπ*) are linear with respect to the occupation measure *^ρ^π*

A non-proof of strong duality

[Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS'19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23] ¹⁸

A non-proof of strong duality *P* $\mathbf{p}^* = \max_{\mathbf{p} \in \mathcal{P}}$ *π*∈P(S) $V_0(\pi) = \mathbb{E}_{s, a \sim \pi}$ $\left[\sum_{\rho=0}^{T-1} \gamma^t r_0(s_t, a_t)\right]$ $P_{\rho}^* = \max_{\rho \in \mathcal{R}} \quad V_0(\rho) = \int r_i(s, a) \rho(s, a) ds da$ *t*=0 s.to $V_1(\pi) = \mathbb{E}_{s,a \sim \pi} \left[\sum_{i=1}^{T-1} \gamma^t r_1(s_t, a_t) \right] \geq c$ *t*=0 ≡ s. to $V_1(\rho) = \int r_1(s,a)\rho(s,a)dsda \geq c^{\frac{3}{C}}$ (*P* $\mathbf{r}^{\star} = P_{i}$ $\left\{\text{strongly dual}\right\}$ \leftarrow $\left(P^{\star} = P_{\rho}^{\star}\right)$ $+$ (strongly dual) • CRL is *non-convex* in policy space, but *linear* in occupation measure space re space has *no duality gap* (LP) $P_{\rho}^* = D_{\rho}^* = \min_{\lambda \geq 0} \max_{\rho \in \mathcal{R}} V_0(\rho) + \lambda (V_1(\rho) - c)$ es'19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23

Epigraphs are "convex" in different ways *ρ*¹ *αρ*⁰ + (1 [−] *^α*)*ρ*¹ *π*¹ *ρ*⁰ *π*⁰ $P(S)$ R V_0 *V*⁰ *P ⋆* $P^{\star}_{\rho} \neq D^{\star}_{\rho}$ *P* \uparrow \pm D^* C*^ρ* $\mathcal C$ *V*¹ *V* \bullet

ARCHIME

^A non-proof of strong duality

[Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS'19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23] ²²

Theorem
Let π_{θ} be *ν*-universal, i.e., $\min_{\theta \in \Theta} \max_{s \in \mathcal{S}} \int_{\mathcal{A}} |\pi(a|s) - \pi_{\theta}(a|s)| da \leq \nu$, for all $\pi \in \mathcal{P}(\mathcal{S})$. Then, $\left| P^{\star} - D^{\star}_{\theta} \right| = \Delta \le \frac{1 + ||\lambda^{\star}_{\nu}||_1}{1 - \gamma}$ *Bv* **Sources of error** parametrization richness ($ν$) [Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS'19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23] ²²

Duality gap of parametrized CRL

Duality gap of parametrized CRL

 $\min_{\theta \in \Theta} \max_{s \in \mathcal{S}} \int_{\mathcal{A}} \left| \pi(a|s) - \pi_{\theta}(a|s) \right| da \leq \nu$, for all $\pi \in \mathcal{P}(\mathcal{S})$.

 $\left| P^* - D^*_\theta \right| = \Delta \le \frac{1 + \left\| \lambda^\star_\nu \right\|_1}{1 - \gamma}$ *Bv*

[Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS'19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23] ²²

^ν) horizon (*^γ*)

CONTROL CATO

CANC

OC O

parametrization richness (ν) requirements difficulty (λ^*_{ν})

Theorem Let $πθ$ be *ν*-universal, i.e.

Then,

Sources of error

Duality gap of parametrized CRL

Let *^π*^θ be *^ν*-universal, i.e., $\min_{\theta \in \Theta} \max_{s \in \mathcal{S}} \int_{\mathcal{A}} |\pi(a|s) - \pi_{\theta}(a|s)| da \leq \nu$, for all $\pi \in \mathcal{P}(\mathcal{S})$. $\left| P^* - D^*_\theta \right| = \Delta \le \frac{1 + \left\| \lambda^*_\nu \right\|_1}{1 - \gamma}$ *Bv*

Sources of error

Theorem

Then,

parametrization richness ($ν$) *requirements difficulty* (λ_v^*)

[Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS'19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23] ²²

Agenda

CRL algorithms

In practice. . . $D_{\theta}^* = \min_{\lambda \succeq 0} \max_{\theta \in \Theta} \mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \right]$ $\sum_{t=0}^{T-1} \gamma^t r_0(s_t, a_t) \Bigg] + \lambda \left(\mathbb{E}_{s, a \sim \pi \theta} \left[\frac{1}{T} \right] \right)$ $\sum_{t=0}^{T-1} \gamma^t r_1(s_t, a_t) \Bigg] - c_1$ $\mathsf{Maximize}$ the primal (\equiv vanilla RL): $\{s_t, a_t\} \sim \pi_{\theta_k}$ $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \eta \left[\frac{1}{T} \right]$ $\sum_{t=0}^{T-1} \gamma^t r_{\lambda_k}(s_t, a_t) \Bigg[\nabla_{\theta} \log \big(\pi_{\theta}(a_0|s_0) \big)$ the dual (\equiv policy evaluation): { s_t, a_t } ~ π_{θ_k}

Dual CRL

Theorem Suppose θ^{\dagger} is a ρ -approximate solution of the regularized RL problem:

24

DualCRL

The state-action sequence $\{s_t, a_t \sim \pi^\dagger(\lambda_k)\}$ generated by dual CRL is $(\rho = \nu = 0)$

is a *solution* of the CRL problem (in fact, it is *strongerial*

[Paternain, Chamon, Calvo-Fullana, and Ribeiro, NeurIPS'19; Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC'24] ²⁵

Safe navigation

Problem Find a control policy that navigates the environment effectively and safely

3 **Charl** Jual variable (λ_i) Dual variable (*λi*) 2 1 θ 0 1 2 3 4 $\times10^4$ Iteration $\hat{\bullet}$

[Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23] ²⁶

Safe navigation

Problem

Find a control policy that navigates the environment effectively and safely

(a) [Paternal, Calva-Fullana, Calva-Fullana, Chamon, Ribeiro, IEEE TAC'23] 27

CONTROLLED

 $\frac{1}{\Theta}$

Š

Wireless resource allocation

Problem Allocate the least transmit power to *^m* device pairs to achieve a communication rate

• The dual variables oscillate [⇒] the policy switch [⇒] constraint slacks to oscillate (feasible *on average*) [Uslu, Doostnejad, Ribeiro, NaderiAlizadeh, arxiv:2405.05748] ²⁸

Monitoring task

Problem Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least $1/3$ of the time each

ana, Paternain, Chamon, and Ribeiro, IEEE TAC'24] 29

What dual CRL cannot do Theorem The state-action sequence $\{s_t, a_t \sim \pi^{\dagger}(\lambda_k)\}$ (i) almost surely feasible: \lim_{m} \sum^{T-1} $r_i(s_t, a_t) \ge c_i$ a.s., for all *i* \sum^{T-1}

is a *solution*

 \Rightarrow Cannot *effectively* obtain an optimal policy π⁺ from the sequence of Lagrangian maximizers π[†](λ*k*)

[Paternain, Chamon, Calvo-Fullana, and Ribeiro, NeurIPS'19; Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC'24] ³⁰

Primal recovery

- General issue with duality
	- **•** (Primal-)dual methods: $\frac{1}{K}$ $\sum_{k=1}^{K-1} f(\boldsymbol{\theta}_k) \to f(\boldsymbol{\theta}^\star)$, but $f(\boldsymbol{\theta}_k) \not\to f(\boldsymbol{\theta}^\star)$ *k*=0
- ◆ Convex optimization ⇒ dual averaging
	- \blacksquare *f* $\left(\frac{1}{K}\right)$ $\sum_{k=1}^{K-1} \theta_k \leq \frac{1}{K}$ $\sum_{k=1}^{K-1} f(\theta_k)$ for all *K* (convexity) ⇒ = 1 *K* X*K k*=1 $\bm{\theta}_k \rightarrow \bm{\theta}^*$ *⋆*
- **Q** Non-convex optimization ⇒ randomization
	- **■** $\theta^{\dagger} \sim$ Uniform $(\theta_k) \Rightarrow \mathbb{E}\left[f(\theta^{\dagger})\right] = \frac{1}{K} \sum_{k=1}^{K} f(\theta_k) \rightarrow f(\theta^{\star})$ *k*=1 (requires memorizing the whole training sequence)

Q We do not know how to find an optimal policy π^* in the policy space

 $\hat{\odot}$

MAR CHEO

MARIO ATTO

CARD

PECE

 \blacktriangleright Find Lagrangian maximizing policies $\pi^{\dagger}(\lambda_k) \Rightarrow$ unconstrained RL problem with reward $r_{\lambda_k}(s,a)$

$$
\pi^\dagger(\lambda_k) \in \underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{argmax}} \ \underset{T \to \infty}{\text{lim}} \ \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_{\lambda_k}(s_t, a_t) \right]
$$

Section

 $\ddot{\mathbf{Q}}$

oute face

on. Ribeiro. IEEE TAC'23

State-augmented CRL

 \blacktriangleright Find Lagrangian maximizing policies $\pi^{\dagger}(\lambda_k) \Rightarrow$ unconstrained RL problem with reward $r_{\lambda_k}(s,a)$

 \bullet Update λ_k to generate a sequence of $\pi^{\dagger}(\lambda_k)$ that are "samples" from π^{\star} \Rightarrow equivalent to an MDP with (augmented) states $\tilde{s} = (s, \lambda)$ In a paramain, Chamon, Ribeiro, IEEE TAC'23]

Ana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

Sample of the matrix of the matrix of the matrix of the matrix of the samples" from π^*
 \bullet equivalent to an MDP with (augm

 \blacktriangleright Find Lagrangian maximizing policies $\pi^{\dagger}(\lambda_k) \Rightarrow$ unconstrained RL problem with reward $r_{\lambda_k}(s,a)$

- \bullet Update λ_k to generate a sequence of $\pi^{\dagger}(\lambda_k)$ that are "samples" from π^{\star} $⇒$ equivalent to an MDP with (augmented) states \tilde{s} = (s, λ)
and (augmented) transition kernel that includes the dual variables updates
	-

ana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

State-augmented CRL in practice *st* $\pi^{\dagger}(s_t, \lambda_k)$ \longrightarrow a_t $p(s_{t+1}|s_t, a_t)$ $\lambda_{k+1} =$ (*st, λk*)

 \overline{O}

PARTS PRESS

MARE ASSES

.
3-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

.
3-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

lana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

Monitoring task

en. Ribeiro, IEEE TAC'23

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

.
Ribeiro, IEEE TAC'23

Solving CRL

0 0*.*5 1 1*.*5 2

Iteration (*^k*)

 $\times10^5$

*c*¹ *c*² *c*³ *c*⁴

MARS ARE

 $\sqrt{1-\frac{1}{2}}$

• A-CRL solves (P-CRL) by generating state-action sequences $\{(s_t, a_t)\}$ that are (i) almost surely feasible and (ii) $O(\eta)$ -optimal $\left| \text{Cauch-Flalman}, \text{Paternain}, \text{Channon}, \text{Riberio}, \text{IEEE TAC23} \right|$

Monitoring task

 $P(R_1) > 0.5$

 $\mathbb{P}(R_3) \geq 0.$

 $0 \t 2 \t 4 \t 6 \t 8 \t 10$

 $\mathbb{P}(R_2)\geq 0.15$

 $\mathbb{P}(R_4) \geq 0.05$

-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

• A-CRL solves (P-CRL) by generating state-action sequences $\{(s_t, a_t)\}$ that are (i) almost surely feasible and (ii) $O(\eta)$ -optimal $\left[\text{Galoo-Fullana}, \text{Paternain}, \text{Channon}, \text{Ribeiro}, \text{IEEE TOC23}\right]$

• But A-CRL does not find a feasible and ^O(*η*)-optimal policy *^π ⋆* [⇒] It finds a policy *^π* † *^θ* on an augmented MDP (*s, λ*) that generates the same trajectories as dual CRL on the original MDP (*^s*)

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23] ³⁸

Summary

- **Constrained RL is the a tool for decision making under requirements** CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL
 \Rightarrow (P-RL) \subsetneq (P-CRL)
e.g., safety (Patemain et al., IEEE 74023), Wireless resource allocation (Eisen et al., IEEE TSP'1 monitoring [Calvo-Fullana et al., IEEE TAC'2
- **Constrained RL is hard. . .**
- **. . . but possible. How?**

Summary

• **Constrained RL is the a tool for decision making under requirements**

0*.*00 0*.*05 0*.*10 0.15 0*.*20 0*.*25

Average occupation

age o Avera

nocupation

- **Constrained RL is hard. . .**
- **. . . but possible. How?**

Summary

- **Constrained RL is the a tool for decision making under requirements**
- CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL \Rightarrow (P-RL) \subseteq (P-CRL)
-> (P-RL) \subseteq (P-CRL)
e.g., safety (Patemain et al., IEEE TAC23), Wireless resource allocation (Eis monitoring [Calvo-Fullana et al., IEEE TAC'24]

• **Constrained RL is hard. . .**

CRL is strongly dual (despite non-convexity), but that is not always enough to obtain feasible solution ⇒ primal-dual methods

• **. . . but possible. How?**

41

£ l. $\overline{\bigcirc}$ è

41

Summary

• **Constrained RL is the a tool for decision making under requirements** CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL
 \Rightarrow (P-RL) \subseteq (P-CRL)

e.g., safety (Patemain et al., IEEE 74023), Wireless resource allocation (Eisen et al., IEEE TSP'1 monitoring [Calvo-Fullana et al., IEEE TAC'24]

• **Constrained RL is hard. . .**

CRL is strongly dual (despite non-convexity), but that is not always enough to obtain feasible solutions ⇒ primal-dual methods

• **. . . but possible. How?**

When combined with a *systematic state augmentation* technique, we can use policies that solve (P-RL) to solve (P-CRL)

Agenda

- I. Constrained supervised learning
	- Constrained learning theory
	- Resilient constrained learning ■ Robust learning
- Break (30 min)
- II. Constrained reinforcement learning
	- Constrained RL duality ■ Constrained RL algorithms
	-

Q&A and discussions

41

REAL'S

CAM

 $\hat{\boldsymbol{\theta}}$

 $\ddot{\alpha}$ $\frac{1}{2}$ \bigcirc $\frac{1}{2}$

