Agenda

- I. Constrained supervised learning
 - Constrained learning theory
 - Resilient constrained learning
 - Robust learning

Break (30 min)

- II. Constrained reinforcement learning
 - Constrained RL dualityConstrained RL algorithms

Q&A and discussions

Constrained reinforcement

learning

Agenda

Constrained reinforcement learning

CMDP duality

CRL algorithms

Reinforcement learning

· Model-free framework for decision-making in Markovian settings

<u>o</u>-0

Reinforcement learning

• Model-free framework for decision-making in Markovian settings $\mathbb{P}\left(s_{t+1} \mid \{s_u, a_u\}_{u \leq t}\right) = \mathbb{P}\left(s_{t+1} \mid s_t, a_t\right) = p(s_{t+1} \mid s_t, a_t)$

Environment

- MDP: $\mathcal S$ (state space), $\mathcal A$ (action space), p (transition kernel)

Reinforcement learning

• Model-free framework for decision-making in Markovian settings $\mathbb{P}\left(s_{t+1} \mid \{s_u, a_u\}_{u \leq t}\right) = \mathbb{P}\left(s_{t+1} \mid s_t, a_t\right) = p(s_{t+1} \mid s_t, a_t)$

• MDP: S (state space), A (action space), p (transition kernel), $r : S \times A \rightarrow [0, B]$ (reward)

3

- MDP: S (state space), A (action space), p (transition kernel), $r : S \times A \rightarrow [0, B]$ (reward)
- $\mathcal{P}(\mathcal{S}):$ space of probability measures parameterized by \mathcal{S}
- T (horizon) (possibly $T \to \infty)$ and $\gamma < 1$ (discount factor) (possibly $\gamma = 1)$

٢

۲

Reinforcement learning

Model-free framework for decision-making in Markovian settings

 $\mathbb{P}\left(s_{t+1} \mid \{s_u, a_u\}_{u \le t}\right) = \mathbb{P}\left(s_{t+1} \mid s_t, a_t\right) = p(s_{t+1} \mid s_t, a_t)$

(P-RL) can be solved using policy gradient and/or Q-learning type algorithms

Problem Find a control policy that navigates the environment effectively and safely

Constrained RL

Ò

۲

۲

ġ

۲

5

,

Q.

۲

- MDP: S (state space), A (action space), p (transition kernel), $r_i : S \times A \rightarrow [0, B]$ (reward)
- $\mathcal{P}(\mathcal{S}):$ space of probability measures parameterized by \mathcal{S}
- sibly $T
 ightarrow \infty$) and $\gamma < 1$ (discount factor) (possibly $\gamma = 1$)

Safe navigation

Problem Find a control policy that navigates the environment effectively and safely

۲

Safe navigation

Safe navigation

 $\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize }} \mathbb{E}_{s,a \sim \pi}$

 $\left|\frac{1}{T}\sum\right|$

Safe navigation

Problem Find a control policy that navigates the environment effectively and safely

$$\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize }} \mathbb{E}_{\pi, a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \underbrace{- \|s - s_{\text{goal}}\|^2}_{r_0} - \sum_{i=1}^5 w_i \underbrace{\mathbb{I}(s_t \in \mathcal{O}_i)}_{r_i} \right]$$

Safe navigation

Problem Find a control policy that navigates the environment effectively and safely

in, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23]

Safe navigation

Problem Find a control policy that navigates the environment effectively and safely

Safe navigation

Problem

Find a control policy that navigates the environment effectively and safely

$$\begin{array}{ll} \underset{\pi \in \mathcal{P}(S)}{\text{maximize}} & \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_0(s_t, a_t) \right] \\ \text{subject to} & \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \underbrace{\mathbb{I}(s_t \notin \mathcal{O}_t)}_{r_t} \right] \geq 1 - \frac{\delta_i}{T} \\ \text{Solety quarantee}. \end{array}$$

 $\sum_{t=0}^{T-1} \mathbb{P}(\mathcal{E}_t) \ge T - \delta \Longrightarrow \mathbb{P}\left(\bigcap_{t=0}^{T-1} \mathcal{E}_t\right) \ge 1 - \delta$

Wireless resource allocation

 $\max_{\pi \in \mathcal{P}(\mathcal{S})} \mathbb{E}_{h, p \sim \pi(h)} \left| \frac{1}{T} \sum_{h \in \mathcal{P}(\mathcal{S})} \right|$

, Zhang, Chamon, Lee, and Ribeiro, IEEE TSP'19]

Problem Allocate the least transmit power to m device pairs to achieve a communication rate

Ö ۲

8

 \odot

Ö

۲

8

. (
)

Wireless resource allocation

Problem Allocate the least transmit power to m device pairs to achieve a communication rate

Wireless resource allocation

 $\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}}$

۲

9

en, Zhang, Chamon, Lee, and Ribeiro, IEEE TSP'19]

in, Verma, Swami, Segarra, As

Constrained RL

MDP: S (state space), A (action space), p (transition kernel), $r_i : S \times A \rightarrow [0, B]$ (reward)

 $\mathcal{P}(\mathcal{S})$: space of probability measures parameterized by \mathcal{S}

sibly $T
ightarrow \infty)$ and $\gamma < 1$ (discount factor) (po

mon, Ribeiro, IEEE TAC'23...] Achiam et al. ICMI'17: Pate in Chamon Calvo-Eullana Ribeiro NeurIPS'19: Pa

Wireless resource allocation Problem Allocate the least transmit power to *m* device pairs to achieve a communication rate 6

ury, Paternain, Verma, Swami, Segarra, A

Monitoring task

Problem Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

Monitoring task

Ş.

٢

0

à 6 •

Problem Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

6

.

۲

eiro, IEEE TAC'24

Monitoring task

Problem Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

lana, Paternain, Chamon, Ribeiro, IEEE TAC'24]

, Ribeiro, IEEE TAC'24

Monitoring task

Problem Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

12

 $\mathbf{RL} \subsetneq \mathbf{CRL}$

Proposition There exist environments in which every task cannot be unambiguously described by a reward

-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC'24]

					٠ 🜔
Proposition					0
There exist environments in a	which every task car	nnot b	e unambiguo	usly described by a reward	
(MDPs)	(occupation meas	sure)	(induced by	a unique π^{\star} that maximizes a reward)	
There are tasks that CRL can tackle and RL cannot					
	$\underset{\pi \in \mathcal{D}(S)}{\text{maximize }} V(\pi)$	Ç	$\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}}$	$V_0(\pi)$	
	πeP(δ)	*	subject to	$V_i(\pi) \ge c_i$	্
\Rightarrow Regularized RL ca	nnot solve all CRL p	robler	ns		

CRL methods

How can we tackle CRL problems?

na, Paternain, Chamon, and Ribeiro, IEEE TAC'24

¢-©

۲

13

16

CMDP duality

16

CMDP duality $D^{\star} = \min_{\lambda \succeq 0} \max_{\pi \in \mathcal{P}(\mathcal{S})} \mathbb{E}_{s, a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_0(s_t, a_t) \right] + \lambda \mathbb{E}_{s, t}$ $P^* = \max_{\pi \in \mathcal{P}(\mathcal{S})} \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_0(s_t, a_t) \right] \text{ subject to } \mathbb{E}_{s,a \sim T}$

- Stractable Equivalent to solving a sequence of unconstrained RL problems
- 8 Approximation guarantee $\leftarrow D^{\star} = P^{\star}$ (strong duality) [

CMDP duality $D^{\star} = \min_{\lambda \succeq 0} \max_{\pi \in \mathcal{P}(S)} \mathbb{E}_{s, a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] + \lambda \mathbb{E}_{s, a}$ $P^{\star} = \max_{\pi \in \mathcal{P}(S)} \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] \text{ subject to } \mathbb{E}_{s,a \sim t}$ $\frac{1}{T}\sum_{t=1}^{T} \gamma^{t}r_{1}(s_{t}, a_{t}) \ge 0$

Theoren If there exists $\pi^{\dagger} \in \mathcal{P}(\mathcal{S})$ such that $V_i(\pi^{\dagger}) > c_i$ for all i = 1, ..., m, then $D^* = P^*$ (strong duality).

- There is some sort of hidden convexity in CRL \Rightarrow Occupation measure

Occupation measure

E.

• The occupation measure of a policy π is the (averaged) probability of visiting each state-action pair

$$\rho_{\pi}(s, a) = \frac{1 - \gamma}{1 - \gamma^{T}} \sum_{t=0}^{T-1} \gamma^{t} \mathbb{P}_{s, a \sim \pi} \left(s_{t} = s, a_{t} = a \right) \longleftrightarrow \pi(a|s) = \frac{\rho_{\pi}(s, a)}{\int_{\mathcal{A}} \rho_{\pi}(s, a) da}$$

- The value functions $V_i(\pi)$ can be written as an expectation with respect to the ho_π

$$\sum_{a \sim \pi} \left[\sum_{t=0}^{T-1} \gamma^t r_i(s_t, a_t) \right] = V_i(\pi) \propto V(\rho_{\pi}) = \mathbb{E}_{(s,a) \sim \rho_{\pi}} \left[r_i(s, a) \right]$$
$$= \int_{\mathcal{S} \times \mathcal{A}} r_i(s, a) \rho_{\pi}(s, a) \, ds da$$

 \Rightarrow The value functions $V_i(
ho_{\pi})$ are linear with respect to the occupation measure ho

A non-proof of strong duality

rIPS'19; Paternain, Calvo-Fullana, C

lity • Epigraph of CRL in occupation measure is convex $C_{\rho} = \left\{ [V_0(\rho); V_1(\rho)] \text{ for some } \rho \in \mathcal{R} \right\}$ • Epigraph of CRL in policy need not be convex $C = \left\{ [V_0(\pi); V_1(\pi)] \text{ for some } \pi \in \mathcal{P}(S) \right\}$

19

A non-proof of strong duality

Epigraphs are "convex" in different ways R $\mathcal{P}(\mathcal{S})$ V_0 : D PС V_1 $V(\alpha\rho_1 + (1-\alpha)\rho_2) = \alpha V(\rho_1) + (1-\alpha)V(\rho_2)$ $\exists \pi_{\alpha}$ such that $V(\pi_{\alpha}) = \alpha V(\pi_1) + (1 - \alpha)V(\pi_2)$ 0 eiro. NeurIPS'19: Paternain. Calvo-Fullana. Cl

Strong duality in practice $P^* = D^* = \min_{\lambda \geq 0} \max_{\pi \in \mathcal{P}(S)} \mathbb{E}_{s, a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma_t^t r_0(s_t, a_t) \right] + \lambda \mathbb{E}_{s, c}$ $\left\lfloor \frac{1}{T} \sum_{t=0}^{I-1} \gamma^t r_1(s_t, a_t) \right\rfloor$ ťΔ $D^*_{\theta} = \min_{\lambda \succeq 0} \max_{\theta \in \Theta} \, \mathbb{E}_{s, a \sim \pi_{\theta}} \left\lceil \frac{1}{T} \sum^{T-1} \gamma^t r_0(s_t, a_t) \right\rceil + \lambda \, \mathbb{E}_{s, a \sim \pi_{\theta}} \left\lceil \frac{1}{T} \sum^{T-1} \gamma^t r_1(s_t, a_t) \right\rceil$ Strong duality in policy space $\mathcal{P}(\mathcal{S})$ despite $V_0(\pi)$ and $V(\pi)$ being non-convex But in practice, policies are parameterized (π_{θ}) Introduces a duality gap Δ because standard parametrizations are not co

0

٢

, Calvo-Fullana, Ribeiro, NeurIPS'19; Paternain, Calvo-Fullana, Chamon

22

۲

Duality gap of parametrized CRL	
Theorem Let π₀ be ν-universal, i.e.,	
$\min_{\theta\in\Theta} \max_{s\in\mathcal{S}} \; \int_{\mathcal{A}} \big \pi(a s) - \pi_{\theta}(a s)\big da \leq \nu, \text{ for all } \pi\in\mathcal{P}(\mathcal{S}).$	
Then, $\left P^{\star}-D^{\star}_{\theta}\right =\Delta\leq\frac{1+\left\ \pmb{\lambda}_{\nu}^{\star}\right\ _{1}}{1-\gamma}\ B\nu$	
Sources of error	
parametrization nonness (ν) requirements difficulty (λ_{ν}) r	$10112011(\gamma)$

Then.

on, Calvo-Fullana, Ribeiro, NeurIPS'19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23]

Fullana, Ribeiro, NeurIPS'19; Pater ain Calvo-Fullana Chamon

Agenda

CRL algorithms

In practice... $D_{\theta}^{*} = \min_{\lambda \geq 0} \max_{\theta \in \Theta} \mathbb{E}_{s, a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] + \lambda \left(\mathbb{E}_{s, a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{1}(s_{t}, a_{t}) \right] - c_{1} \right)$ Maximize the primal (\equiv vanilla RL): { s_t, a_t } ~ π_{θ_k} $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \eta \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_{\lambda_k}(s_t, a_t) \right] \nabla \boldsymbol{\theta} \log \left(\pi \boldsymbol{\theta}(a_0 | s_0) \right)$ Update the dual (\equiv policy evaluation): { s_t, a_t } ~ π_{θ_k} $\lambda_{k+1} = \left[\lambda_k - \eta \left(\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_1(s_t, a_t) - c_1\right)\right]$

Suppose θ^{\dagger} is a ρ -approximate solution of the regularized RL problem:

$$P^{\star} - L\left(\boldsymbol{\theta}_{K}, \boldsymbol{\lambda}_{K}\right) \leq \frac{1 + \|\boldsymbol{\lambda}_{\nu}^{\star}\|_{1}}{1 - \alpha} B\nu + \rho$$

۲

Dual CRL

$$\left|P^{\star} - L\left(\boldsymbol{\theta}_{K}, \boldsymbol{\lambda}_{K}\right)\right| \leq \frac{1 + \left\|\boldsymbol{\lambda}_{\nu}^{\star}\right\|_{1}}{1 - r} B\nu + \rho$$

The state-action sequence $\{s_t, a_t \sim \pi^{\dagger}(\lambda_k)\}$ generated by dual CRL is $(\rho = \nu = 0)$

(i) almost surely feasible:
$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} r_i(s_t, a_t) \ge c_i \text{ a.s., for all } i$$
(ii) near-optimal:
$$\lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_0(s_t, a_t) \right] \ge P^* - \frac{\eta B^2}{2}$$

is a solution of the CRL problem (in fact, it is stronge

urIPS'19: Calvo-Eullana, Paternain, Chamon, and Rib

Safe navigation

Problem Find a control policy that navigates the environment effectively and safely

Dual variable (λ_i) $\times 10^4$ Iteration

Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23

Problem Find a control policy that navigates the environment effectively and safely

Wireless resource allocation

Problem Allocate the least transmit power to m device pairs to achieve a communication rate

۲

٢

The dual variables oscillate \Rightarrow the policy switch \Rightarrow constraint slacks to oscillate (feasible

Monitoring task

Problem Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

ullana, Paternain, Chamon, and Ribeiro, IEEE TAC'24]

Primal recovery

- General issue with duality
 - (Primal-)dual methods: $\frac{1}{K}\sum_{k=1}^{K} f(\theta_{k}) \rightarrow f(\theta^{*})$, but $f(\theta_{k}) \not\rightarrow f(\theta^{*})$
- Convex optimization ⇒ dual averaging
 - $\left|\theta_k\right| \leq \frac{1}{K}$
- • $\boldsymbol{\theta}^{\dagger} \sim \text{Uniform}(\boldsymbol{\theta}_k) \Rightarrow \mathbb{E}\left[f(\boldsymbol{\theta}^{\dagger})\right] = \frac{1}{K} \sum f(\boldsymbol{\theta}_k) \rightarrow f(\boldsymbol{\theta}^{\star})$
 - (requires memorizing the whole training sequence)

 \odot

33

Ó

29

8 We do not know how to find an optimal policy π^* in the policy space

non, Ribeiro, IEEE TAC'23]

What we CAN do $p(s_{t+1}|s_t, a_t)$ (s_{t+1}) $\pi^{\dagger}(s_t, \lambda_k)$ a_t λ_k

• Find Lagrangian maximizing policies $\pi^{\dagger}(\lambda_k) \Rightarrow$ unconstrained RL problem with reward $r_{\lambda_k}(s, a)$

$$\pi^{\dagger}(\lambda_{k}) \in \underset{\pi \in \mathcal{P}(S)}{\operatorname{argmax}} \lim_{T \to \infty} \mathbb{E}_{s, a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_{\lambda_{k}}(s_{t}, a_{t}) \right]$$

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

State-augmented CRL

• Find Lagrangian maximizing policies $\pi^{\dagger}(\lambda_k) \Rightarrow$ unconstrained RL problem with reward $r_{\lambda_k}(s, a)$

 ${\it O}$ Update λ_k to generate a sequence of $\pi^\dagger(\lambda_k)$ that are "samples" from π^\star \Rightarrow equivalent to an MDP with (augmented) states $\tilde{s} = (s, \lambda)$

llana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

0

ullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

State-augmented CRL

34

-

0

.

0

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

State-augmented CRL in practice $p(s_{t+1}|s_t, a_t)$ $\pi^{\dagger}_{\theta}(s_t, \lambda)$ a_t $\sum r_{\lambda}(s_t, a_t)$ $\lim \mathbb{E}_s$

Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

Monitoring task

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

10

8

6

4

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

• During training: Learn a family of policies $\pi^{\dagger}_{\theta}(s, \lambda)$ that maximizes the Lagrangian for all (fixed) λ $\pi^{\dagger}_{\theta}(\lambda) \in \operatorname*{argmax}_{\theta \in \Theta} \mathbb{E}_{\lambda \sim}$

Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

Monitoring task

Solving CRL

Ļ

•

-

Ø

0

38

£

. ()

٢

۲

•

41

A-CRL solves (P-CRL) by generating state-action sequences $\{(s_t, a_t)\}$ that are (i) almost surely feasible and (ii) $O(\eta)$ -optimal [Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE

ana, Paternain, Chamon, Ribeiro, IEEE TAC'23

Monitoring task

A-CRL solves (P-CRL) by generating state-action sequences $\{(s_t, a_t)\}$ that are . (i) almost surely feasible and (ii) $O(\eta)$ -optimal [Calvo-Fullana, Paternain, Ch

But A-CRL does not find a feasible and $\mathcal{O}(\eta)\text{-optimal policy }\pi^\star$ ⇒ It finds a policy π¹_θ on an augmented MDP (s, λ) that generates the same trajectories as dual CRL on the original MDP (s)

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

Summary

- Constrained RL is the a tool for decision making under requirements CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL \Rightarrow (P-RL) \subseteq (P-CRL)
- Constrained RL is hard...
- ... but possible. How?

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

Ó

Summary

- Constrained RL is the a tool for decision making under requirements
- CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL \Rightarrow (P-RL) \subsetneq (P-CRL) e.g., safety [Patemain et al., IEEE TAC23], Wireless resource allocation [Even et al., IEEE TSP19; Chowdhary et al., Automatic Structure and Structu

Constrained RL is hard...

CRL is strongly dual (despite non-convexity), but that is not always enough to obtain feasible solutions ⇒ primal-dual methods

...but possible. How?

Summary

 Constrained RL is the a tool for decision making under requirements CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL \Rightarrow (P-RL) \subseteq (P-CRL) e.g., safety [Pateman et al. [EEE TAC23], Wireless resource allocation [Eeen et al. [EEE TSP19; Chowdrury et al., Asiomar's provided in the text of tex of text of text of text of text of text of tex (
 (
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (

@<u> </u>@

-

Ş.

1. \bigcirc

٢ 6

۲

6

¢

۲

۲ •

Constrained RL is hard...

CRL is strongly dual (despite non-convexity), but that is not always enough to obtain feasible solutions \Rightarrow primal-dual methods

... but possible. How?

When combined with a systematic state augmentation technique, we can use policies that solve (P-RL) to solve (P-CRL)

Agenda

- I. Constrained supervised learning
 - Constrained learning theory Resilient constrained learning
 - Robust learning

Break (30 min)

- II. Constrained reinforcement learning
 - Constrained RL duality Constrained RL algorithms

Q&A and discussions

