
Agenda

I. Constrained supervised learning

■ Constrained learning theory

■ Resilient constrained learning

■ Robust learning

Break (30 min)

II. Constrained reinforcement learning

■ Constrained RL duality

■ Constrained RL algorithms

Q&A and discussions

https://luizchamon.com/eusipco
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Reinforcement learning

• Model-free framework for decision-making in Markovian settings

P
(
st+1 | {su, au}u≤t

)
= P

(
st+1 | st, at

)
= p(st+1 | st, at

)

Agentπ

Environment

Action
at

st+1

State
st

rt+1

Reward
rt

maximize
π∈P(S)

V (π) ≜ Es,a∼π

[
1
T

T∑
t=0

γtr(st, at)

]
(P-RL)

• MDP: S (state space), A (action space), p (transition kernel)

, r : S × A → [0, B] (reward)

• P(S): space of probability measures parameterized by S

• T (horizon) (possibly T → ∞) and γ < 1 (discount factor) (possibly γ = 1)
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Reinforcement learning

• Model-free framework for decision-making in Markovian settings

P
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rt

maximize
π∈P(S)

V (π) ≜ Es,a∼π

[
1
T

T∑
t=0

γtr(st, at)

]
(P-RL)

• (P-RL) can be solved using policy gradient and/or Q-learning type algorithms
[W’92, WD’92, BT’96, KT’00, JFEPF’14, HKSC’15, NFPIY’15, AJFR’17, PP’18, SB’18, B’19, KCP’19. . . ]
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Constrained RL

maximize
π∈P(S)

V0(π) ≜ Es,a∼π

[
1
T

T −1∑
t=0

γtr0(st, at)

]

subject to Vi(π) ≜ Es,a∼π

[
1
T

T −1∑
t=0

γtri(st, at)

]
≥ ci, i = 1, . . . , m

(P-CRL)

• MDP: S (state space), A (action space), p (transition kernel), ri : S × A → [0, B] (reward)

• P(S): space of probability measures parameterized by S

• T (horizon) (possibly T → ∞) and γ < 1 (discount factor) (possibly γ = 1)

[Altman’99; Achiam et al., ICML’17; Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS’19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC’23. . . ] 4

Safe navigation

Problem
Find a control policy that navigates the environment effectively and safely

maximize
π∈P(S)

Es,a∼π

 1
T

T −1∑
t=0

−∥s− sgoal∥2︸ ︷︷ ︸
r0

−
5∑

i=1

wiI(st ∈ Oi)︸ ︷︷ ︸
ri
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Safe navigation

Problem
Find a control policy that navigates the environment effectively and safely

maximize
π∈P(S)

Es,a∼π

[
1
T

T −1∑
t=0

r0(st, at)

]

subject to Es,a∼π

[
1
T

T −1∑
t=0

I(st /∈ Oi)︸ ︷︷ ︸
ri

]
≥ 1− δi

T

• Safety guarantee:
T −1∑
t=0

P(Et) ≥ T − δ =⇒ P
( T −1⋂

t=0

Et

)
≥ 1− δ

[Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC’23] 6
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Wireless resource allocation

Problem
Allocate the least transmit power to m device pairs to achieve a communication rate

T1 T2 · · · Tm

R1 R2 · · · Rm

Input (p) ← Action

Output = Input× Channel + Noise

⇒ Rate(p, h) ← Reward

Channel (h) ← State

7
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maximize
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] T1 T2 · · · Tm

R1 R2 · · · Rm

[Eisen, Zhang, Chamon, Lee, and Ribeiro, IEEE TSP’19] 8
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maximize
π∈P(S)

Eh,p∼π(h)

[
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T

T −1∑
t=0

−
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pi,t
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1
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[Chowdhury, Paternain, Verma, Swami, Segarra, Asilomar’23] 8

Wireless resource allocation

Problem
Allocate the least transmit power to m device pairs to achieve a communication rate

maximize
π∈P(S)

E(h,b),p∼π(h,b)

[
1
T

T −1∑
t=0

−
m∑

i=1

I
(
bi,t = 0

)]

s. to E(h,b),p∼π(h,b)

[
1
T

T −1∑
t=0

Ratei(pt,ht)

]
≥ ci

T1 T2 · · · Tm

R1 R2 · · · Rm

[Chowdhury, Paternain, Verma, Swami, Segarra, Asilomar’23] 8

Constrained RL

maximize
π∈P(S)

V0(π) ≜ Es,a∼π

[
1
T

T −1∑
t=0

γtr0(st, at)

]

subject to Vi(π) ≜ Es,a∼π

[
1
T

T −1∑
t=0

γtri(st, at)

]
≥ ci, i = 1, . . . , m

(P-CRL)

• MDP: S (state space), A (action space), p (transition kernel), ri : S × A → [0, B] (reward)

• P(S): space of probability measures parameterized by S

• T (horizon) (possibly T → ∞) and γ < 1 (discount factor) (possibly γ = 1)

[Altman’99; Achiam et al., ICML’17; Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS’19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC’23. . . ] 9



Monitoring task
Problem
Find a policy that maximizes the time in R0 while monitoring R1 and R2 at least 1/3 of the time each

R1 R2

R0

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC’24] 10
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Problem
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R0

R1 R2

¥ π⋆ = draw actions uniformly at random

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC’24] 10
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Monitoring task
Problem
Find a policy that maximizes the time in R0 while monitoring R1 and R2 at least 1/3 of the time each

maximize
π∈P(S)

lim
T →∞

Es,a∼π

[
1
T

T −1∑
t=0

I
(
st ∈ R0

)]

s. to lim
T →∞

Es,a∼π

[
1
T

T −1∑
t=0

I
(
st ∈ R1

)]
≥ 1

3

lim
T →∞

Es,a∼π

[
1
T

T −1∑
t=0

I
(
st ∈ R2

)]
≥ 1

3

R0

R1 R2

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC’24] 12

RL ⊊ CRL

Proposition
There exist

(MDPs)
environments in which every

(occupation measure)
task cannot be

(induced by a unique π⋆ that maximizes a reward)
unambiguously described by a reward

• There are tasks that CRL can tackle and RL cannot

maximize
π∈P(S)

V (π) ⊊
maximize

π∈P(S)
V0(π)

subject to Vi(π) ≥ ci

⇒ Regularized RL cannot solve all CRL problems

• How can we tackle CRL problems?

[Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC’24] 13
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CRL methods

maximize
π∈P(S)

Es,a∼π

[
1
T

T −1∑
t=0

γtr0(st, at)

]

subject to Es,a∼π

[
1
T

T −1∑
t=0

γtri(st, at)

]
≥ ci

• Reward shaping ≈ penalty methods

q Manual, time-consuming,
domain-dependent

q Trade-offs, training plateaux

• Prior knowledge ≈ projection methods
e.g., safe exploration [Berkenkamp et al., NeurIPS’17, Dalal et al., arXiv’18]

q Requires set of safe actions or safe policies

q Intractable projections

• Linearization and convex surrogates
e.g., CPO [Achiam et al., ICML’17]

q No approximation guarantee

q Approximate problem may be infeasible

14

CRL methods

maximize
π∈P(S)

Es,a∼π

[
1
T

T −1∑
t=0

γtr0(st, at)

]
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[
1
T

T −1∑
t=0

γtri(st, at)

]
≥ ci

• Reward shaping ≈ penalty methods

• Prior knowledge ≈ projection methods
e.g., safe exploration [Berkenkamp et al., NeurIPS’17, Dalal et al., arXiv’18]

• Linearization and convex surrogates
e.g., CPO [Achiam et al., ICML’17]

• Duality
[Bhatnagar et al., JOTA’12; Tesler et al., ICRL’19; PCCR, NeurIPS’19;

Ding et al., NeurIPS’20; PCCR, IEEE TAC’23 . . . ]

¥ Domain independent

¥ Tractable

q Approximation guarantee [non-convexity]

14
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CMDP duality

D⋆ = min
λ⪰0

max
π∈P(S)

L(π,λ)︷ ︸︸ ︷
Es,a∼π

[
1
T

T −1∑
t=0

γtr0(st, at)

]
+ λEs,a∼π

[
1
T

T −1∑
t=0

γtr1(st, at)

]

P ⋆ = max
π∈P(S)

Es,a∼π

[
1
T

T −1∑
t=0

γtr0(st, at)

]
subject to Es,a∼π

[
1
T

T −1∑
t=0

γtr1(st, at)

]
≥ 0

̸

PRIMAL

DUAL

¥ Domain independent⇐ No hyperparameters tuning

¥ Tractable⇐ Equivalent to solving a sequence of unconstrained RL problems

q Approximation guarantee⇐ D⋆ = P ⋆ (strong duality) [e.g., convex optimization]

16
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π∈P(S)
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[
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T
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γtr0(st, at)

]
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[
1
T

T −1∑
t=0

γtr1(st, at)

]
≥ 0PRIMAL

DUAL

Theorem
If there exists π† ∈ P(S) such that Vi(π†) > ci for all i = 1, . . . , m, then D⋆ = P ⋆ (strong duality).

• There is some sort of hidden convexity in CRL⇒ Occupation measure

[Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS’19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC’23] 16



Occupation measure

• The occupation measure of a policy π is the (averaged) probability of visiting each state-action pair

ρπ(s, a) = 1− γ

1− γT

T −1∑
t=0

γt Ps,a∼π

(
st = s, at = a

)
←→ π(a|s) = ρπ(s, a)∫

A
ρπ(s, a)da

• The value functions Vi(π) can be written as an expectation with respect to the ρπ

Es,a∼π

[
T −1∑
t=0

γtri(st, at)

]
= Vi(π) ∝ V (ρπ) = E(s,a)∼ρπ

[
ri(s, a)

]
=
∫

S×A
ri(s, a)ρπ(s, a) dsda

⇒ The value functions Vi(ρπ) are linear with respect to the occupation measure ρπ

17

A non-proof of strong duality

P ⋆ = max
π∈P(S)

V0(π) = Es,a∼π

[
T −1∑
t=0

γtr0(st, at)

]

s. to V1(π) = Es,a∼π

[
T −1∑
t=0

γtr1(st, at)

]
≥ c

≡

P ⋆
ρ = max

ρ∈R
V0(ρ) =

∫
ri(s, a)ρ(s, a)dsda

s. to V1(ρ) =
∫

r1(s, a)ρ(s, a)dsda ≥ c̄

(P ⋆ = P ⋆
ρ ) (strongly dual)(strongly dual) +⇍

• CRL is non-convex in policy space, but linear in occupation measure space

• CRL in occupation measure space has no duality gap (LP)

P ⋆
ρ = D⋆

ρ = min
λ≥0

max
ρ∈R

V0(ρ) + λ
(
V1(ρ)− c

)

[Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS’19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC’23] 18
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]

s. to V1(π) = Es,a∼π

[
T −1∑
t=0

γtr1(st, at)

]
≥ c

≡

P ⋆
ρ = max

ρ∈R
V0(ρ) =

∫
ri(s, a)ρ(s, a)dsda

s. to V1(ρ) =
∫

r1(s, a)ρ(s, a)dsda ≥ c̄

(P ⋆ = P ⋆
ρ ) (strongly dual)(strongly dual) +⇍

• CRL is non-convex in policy space, but linear in occupation measure space

• CRL in occupation measure space has no duality gap (LP)
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A non-proof of strong duality

Cρ
C

V1

V0[1, λ⋆
ρ]⊤

D⋆
ρ = P ⋆

ρ

D⋆
[1, λ⋆]⊤

P ⋆

• Epigraph of CRL in occupation measure is convex

Cρ =
{[

V0(ρ); V1(ρ)
]

for some ρ ∈ R
}

• Epigraph of CRL in policy need not be convex

C =
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V0(π); V1(π)
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for some π ∈ P(S)
}
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Epigraphs are “convex” in different ways

R
ρ0

ρ1
αρ0 + (1 − α)ρ1

Cρ

V1

V0

P ⋆
ρ = D⋆

ρ

V
(
αρ1 + (1− α)ρ2

)
= αV (ρ1) + (1− α)V (ρ2)

P(S)
π0

π1

πα

C

V

V0

P ⋆ = D⋆

∃ πα such that V (πα) = αV (π1) + (1− α)V (π2)

[Paternain, Chamon, Calvo-Fullana, Ribeiro, NeurIPS’19; Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC’23] 20
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Strong duality in practice

P ⋆ = D⋆ = min
λ⪰0

max
π∈P(S)

Es,a∼π

[
1
T

T −1∑
t=0

γtr0(st, at)

]
+ λEs,a∼π

[
1
T

T −1∑
t=0

γtr1(st, at)

]

D⋆
θ = min

λ⪰0
max
θ∈Θ

Es,a∼πθ

[
1
T

T −1∑
t=0

γtr0(st, at)

]
+ λEs,a∼πθ

[
1
T

T −1∑
t=0

γtr1(st, at)

]∆

DUAL

PARAMETRIZED DUAL

• Strong duality in policy space P(S) despite V0(π) and V (π) being non-convex

• But in practice, policies are parameterized (πθ)
⇒ Introduces a duality gap ∆ because standard parametrizations are not convex
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Duality gap of parametrized CRL

Theorem
Let πθ be ν-universal, i.e.,

min
θ∈Θ

max
s∈S

∫
A

∣∣π(a|s)− πθ(a|s)
∣∣da ≤ ν, for all π ∈ P(S).

Then, ∣∣P ⋆ −D⋆
θ

∣∣ = ∆ ≤
1 + ∥λ⋆

ν∥1
1− γ

Bν

Sources of error

parametrization richness (ν) requirements difficulty (λ⋆
ν ) horizon (γ)
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Agenda

Constrained reinforcement learning

CMDP duality

CRL algorithms

23

Primal-dual algorithm

D⋆
θ = min

λ⪰0
max
θ∈Θ

Es,a∼πθ

[
1
T

T −1∑
t=0

γtr0(st, at)

]
+ λ

(
Es,a∼πθ

[
1
T

T −1∑
t=0

γtr1(st, at)

]
− c1

)

• Maximize the primal

(≡ vanilla RL): {st, at} ∼ πθk

θ† ∈ argmax
θ∈Θ

Es,a∼πθ

[
1
T

T −1∑
t=0

γtrλk (st, at)

]
rλk (s, a) = r0(s, a) + λkr1(s, a)

• Update the dual (≡ policy evaluation)

: {st, at} ∼ πθk

λk+1 =

[
λk − η

(
Es,a∼π

θ†

[
1
T

T −1∑
t=0

γtr1(st, at)

]
− c1

)]
+

24

Primal-dual algorithm

D⋆
θ = min

λ⪰0
max
θ∈Θ

Es,a∼πθ

[
1
T

T −1∑
t=0

γtr0(st, at)

]
+ λ

(
Es,a∼πθ

[
1
T

T −1∑
t=0

γtr1(st, at)

]
− c1

)

• Maximize the primal (≡ vanilla RL)

: {st, at} ∼ πθk

θ† ∈ argmax
θ∈Θ

Es,a∼πθ

[
1
T

T −1∑
t=0

γtrλk (st, at)

]
rλk (s, a) = r0(s, a) + λkr1(s, a)

• Update the dual (≡ policy evaluation)

: {st, at} ∼ πθk

λk+1 =

[
λk − η

(
Es,a∼π

θ†

[
1
T

T −1∑
t=0

γtr1(st, at)

]
− c1

)]
+

24

Primal-dual algorithm

D⋆
θ = min

λ⪰0
max
θ∈Θ

Es,a∼πθ

[
1
T

T −1∑
t=0

γtr0(st, at)

]
+ λ

(
Es,a∼πθ

[
1
T

T −1∑
t=0

γtr1(st, at)

]
− c1

)

• Maximize the primal (≡ vanilla RL)

: {st, at} ∼ πθk

θ† ∈ argmax
θ∈Θ

Es,a∼πθ

[
1
T

T −1∑
t=0

γtrλk (st, at)

]
rλk (s, a) = r0(s, a) + λkr1(s, a)

• Update the dual (≡ policy evaluation)

: {st, at} ∼ πθk

λk+1 =

[
λk − η

(
Es,a∼π

θ†

[
1
T

T −1∑
t=0

γtr1(st, at)

]
− c1

)]
+

24

In practice. . .

D⋆
θ = min

λ⪰0
max
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Es,a∼πθ

[
1
T

T −1∑
t=0

γtr0(st, at)

]
+ λ

(
Es,a∼πθ

[
1
T

T −1∑
t=0

γtr1(st, at)

]
− c1

)

• Maximize the primal (≡ vanilla RL): {st, at} ∼ πθk

θk+1 = θk + η

[
1
T

T −1∑
t=0

γtrλk (st, at)

]
∇θ log

(
πθ(a0|s0)

)

• Update the dual (≡ policy evaluation): {st, at} ∼ πθk

λk+1 =

[
λk − η

(
1
T

T −1∑
t=0

γtr1(st, at)− c1

)]
+

24

Dual CRL

Theorem
Suppose θ† is a ρ-approximate solution of the regularized RL problem:

θ† ≈ argmax
θ∈Θ

Es,a∼πθ

[
1
T

T −1∑
t=0

γtrλ(st, at)

]
.

Then, after K =
⌈
∥λ⋆∥2

2ην

⌉
+ 1 dual iterations with step size η ≤ 1− γ

mB
,

the iterates
(
θK ,λK

)
are such that∣∣∣P ⋆ − L

(
θK ,λK

)∣∣∣ ≤ 1 + ∥λ⋆
ν∥1

1− γ
Bν + ρ

[Paternain, Chamon, Calvo-Fullana, and Ribeiro, NeurIPS’19; Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC’24] 25

Dual CRL

Theorem ∣∣∣P ⋆ − L
(
θK ,λK

)∣∣∣ ≤ 1 + ∥λ⋆
ν∥1

1− γ
Bν + ρ

Theorem
The state-action sequence

{
st, at ∼ π†(λk)

}
generated by dual CRL is (ρ = ν = 0)

(i) almost surely feasible: lim
T →∞

1
T

T −1∑
t=0

ri(st, at) ≥ ci a.s., for all i

(ii) near-optimal: lim
T →∞

E
[

1
T

T −1∑
t=0

r0(st, at)
]
≥ P ⋆ − ηB2

2

i.e., is a solution of the CRL problem (in fact, it is stronger: constraints are satisfied a.s.)

[Paternain, Chamon, Calvo-Fullana, and Ribeiro, NeurIPS’19; Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC’24] 25

Safe navigation

Problem
Find a control policy that navigates the environment effectively and safely

2.9

1.9 1.7

1.1

1.5

0 1 2 3 4
×104

0

1

2

3

Iteration

D
ua

lv
ar

ia
bl

e
(λ

i
)

[Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC’23] 26



Safe navigation

Problem
Find a control policy that navigates the environment effectively and safely

−6 −4 −2 0
0.94

0.96

0.98

1.00

−1.3 −1.1 −0.9 −0.7
0.998

0.999

1.000

Reward

S
af

et
y

P
ro

ba
bi

lit
y

0 1 2 3 4
×104

−8

−6

−4

−2

0

Reward shaping
(wi = −2.9)Dual CRL

Iteration (k)

R
ew

ar
d

[Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC’23] 27

Wireless resource allocation

Problem
Allocate the least transmit power to m device pairs to achieve a communication rate
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• The dual variables oscillate⇒ the policy switch⇒ constraint slacks to oscillate (feasible on average)

[Uslu, Doostnejad, Ribeiro, NaderiAlizadeh, arxiv:2405.05748] 28

Monitoring task

Problem
Find a policy that maximizes the time in R0 while monitoring R1 and R2 at least 1/3 of the time each

0.0

1.0

2.0

Iteration (k)

Dual variable [λ1]
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st+1 = R1
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Iteration (k)

Policy [πk(st = R1)]
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Iteration (k)

Constraint slack [V1(πk)]

• The dual variables oscillate⇒ the policy switch⇒ constraint slacks to oscillate (feasible on average)

[Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC’24] 29

What dual CRL cannot do

Theorem ∣∣∣P ⋆ − L
(
θK , λT

)∣∣∣ ≤ 1 + ∥λ⋆
ν∥1

1− γ
Bν + ρ

Theorem
The state-action sequence

{
st, at ∼ π†(λk)

}
generated by dual CRL is (ρ = ν = 0)

(i) almost surely feasible: lim
T →∞

1
T

T −1∑
t=0

ri(st, at) ≥ ci a.s., for all i

(ii) near-optimal: lim
T →∞

E
[

1
T

T −1∑
t=0

r0(st, at)
]
≥ P ⋆ − ηB2

2

i.e., is a solution of the CRL problem.

⇒ Cannot effectively obtain an optimal policy π⋆ from the sequence of Lagrangian maximizers π†(λk)

[Paternain, Chamon, Calvo-Fullana, and Ribeiro, NeurIPS’19; Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC’24] 30

Primal recovery

• General issue with duality

■ (Primal-)dual methods:
1
K

K−1∑
k=0

f(θk)→ f(θ⋆), but f(θk) ̸→ f(θ⋆)

¥ Convex optimization⇒ dual averaging

■ f
( 1

K

K−1∑
k=0

θk

)
≤ 1

K

K−1∑
k=0

f(θk) for all K (convexity)⇒ 1
K

K∑
k=1

θk → θ⋆

q Non-convex optimization⇒ randomization

■ θ† ∼ Uniform(θk)⇒ E
[
f(θ†)

]
= 1

K

K∑
k=1

f(θk)→ f(θ⋆)

(requires memorizing the whole training sequence)

31

What we CANNOT do

st

π⋆(st) at

p(st+1|st, at) st+1

q We do not know how to find an optimal policy π⋆ in the policy space

π⋆ ∈ argmax
π∈P(S)

lim
T →∞

Es,a∼π

[
1
T

T −1∑
t=0

r0(st, at)

]

subject to lim
T →∞

Es,a∼π

[
1
T

T −1∑
t=0

r1(st, at)

]
≥ c1

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC’23] 32

What we CAN do

st

π†(st, λk) at

p(st+1|st, at) st+1

λk λk+1 = . . . λk+1

¥ Find Lagrangian maximizing policies π†(λk)⇒ unconstrained RL problem with reward rλk (s, a)

π†(λk) ∈ argmax
π∈P(S)

lim
T →∞

Es,a∼π

[
1
T

T −1∑
t=0

rλk (st, at)

]

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC’23] 33

What we CAN do

st

π†(st, λk) at

p(st+1|st, at) st+1

λk λk+1 = . . . λk+1

¥ Find Lagrangian maximizing policies π†(λk)⇒ unconstrained RL problem with reward rλk (s, a)

¥ Update λk to generate a sequence of π†(λk) that are “samples” from π⋆

λk+1 =

[
λk − η

(
Es,a∼π†(λk)

[
1
T

T −1∑
t=0

r1(st, at)

]
− c1

)]
+

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC’23] 33



State-augmented CRL

st

π†(s̃t) at

p(st+1|st, at) st+1

λk λk+1 = . . . λk+1

s̃t s̃t+1q(s̃t+1|s̃t+1, at)

¥ Find Lagrangian maximizing policies π†(λk)⇒ unconstrained RL problem with reward rλk (s, a)

¥ Update λk to generate a sequence of π†(λk) that are “samples” from π⋆

⇒ equivalent to an MDP with (augmented) states s̃ = (s, λ)

and (augmented) transition kernel that includes the dual variables updates

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC’23] 33

State-augmented CRL

st

π†(s̃t) at

p(st+1|st, at) st+1

λk λk+1 = . . . λk+1

s̃t s̃t+1q(s̃t+1|s̃t+1, at)

¥ Find Lagrangian maximizing policies π†(λk)⇒ unconstrained RL problem with reward rλk (s, a)

¥ Update λk to generate a sequence of π†(λk) that are “samples” from π⋆

⇒ equivalent to an MDP with (augmented) states s̃ = (s, λ)
and (augmented) transition kernel that includes the dual variables updates

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC’23] 33

State-augmented CRL in practice

st

π†(st, λk) at

p(st+1|st, at) st+1

λk λk+1 = . . . λk+1

π†
θ
(st, λk)

• During training: Learn a family of policies π†
θ(s, λ) that maximizes the Lagrangian for all (fixed) λ

π†
θ(λ) ∈ argmax

θ∈Θ
Eλ∼m

[
lim

T →∞
Es,a∼π

[
1
T

T −1∑
t=0

rλ(st, at)

]]

• During deployment: λk+1 =

[
λk −

η

T0

(k+1)T0−1∑
t=kT0

(
r1(st, at)− c1

)]
+

, at ∼ π†
θ(λk)

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC’23] 34
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Monitoring task
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State-augmented CRL in practice
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θ∈Θ
lim

T →∞
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[
1
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]
, for all λ

• During deployment: Execute at ∼ π†
θ(λk) for T0 iterations and update λk

λk+1 =
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Monitoring task
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Solving CRL

A-CRL:


Training: π†

θ(λ) ∈ argmaxθ∈Θ lim
T →∞

Es,a∼π

[
1
T

T −1∑
t=0

rλ(st, at)

]
, for all λ

Deployment: λk+1 =

[
λk −

η

T0

(k+1)T0−1∑
t=kT0

(
r1(st, at)− c1

)]
+

, at ∼ π†
θ(λk)

• A-CRL solves (P-CRL) by generating state-action sequences {(st, at)} that are
(i) almost surely feasible and (ii) O(η)-optimal [Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC’23]

• But A-CRL does not find a feasible and O(η)-optimal policy π⋆

⇒ It finds a policy π†
θ on an augmented MDP (s, λ) that generates the same trajectories

as dual CRL on the original MDP (s)
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Monitoring task
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Wireless resource allocation

Problem
Allocate the least transmit power to m device pairs to achieve a communication rate
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Summary

• Constrained RL is the a tool for decision making under requirements

CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL
⇒ (P-RL) ⊊ (P-CRL)

e.g., safety [Paternain et al., IEEE TAC’23], wireless resource allocation [Eisen et al., IEEE TSP’19; Chowdhury et al., Asilomar’23],
monitoring [Calvo-Fullana et al., IEEE TAC’24]

• Constrained RL is hard. . .

CRL is strongly dual (despite non-convexity), but that is not always enough to obtain feasible solutions
⇒ primal-dual methods

• . . . but possible. How?

When combined with a systematic state augmentation technique,
we can use policies that solve (P-RL) to solve (P-CRL)
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Agenda

I. Constrained supervised learning

■ Constrained learning theory

■ Resilient constrained learning

■ Robust learning

Break (30 min)

II. Constrained reinforcement learning

■ Constrained RL duality

■ Constrained RL algorithms

Q&A and discussions

https://luizchamon.com/eusipco
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